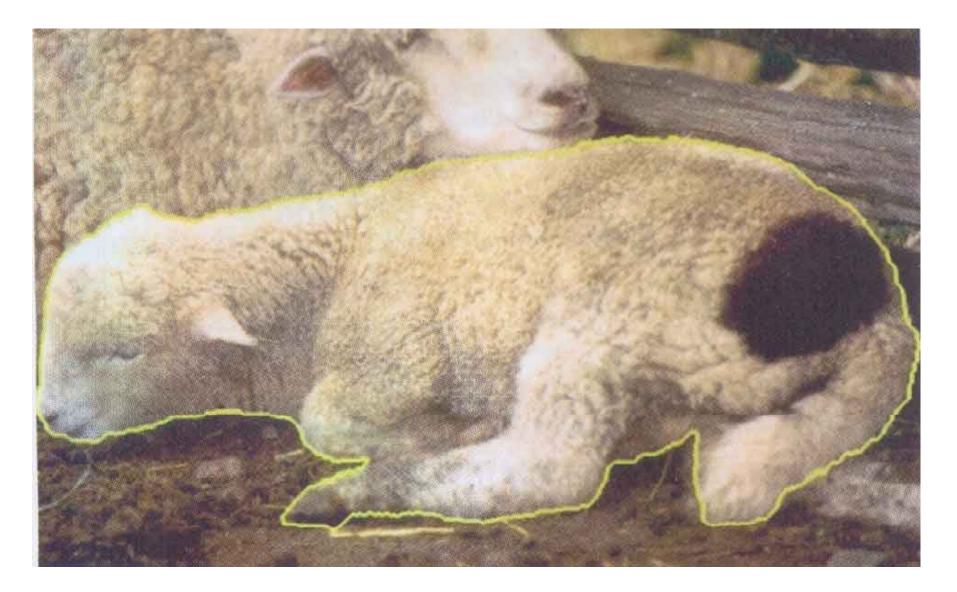
Image Segmentation and convex hull compution

Artificial picture constructed from the segmented images



A popular automated system: SNAKES

Input initial boundary curve (rubber-band)

The rubber-band shrinks to capture the region boundary

Question: Can we solve the problem as a simple mathematical problem?

History

- Goes back to 1994 (15 years ago)
- Tetsuo Asano, Naoki Katoh, and I tried to formulate and solve the image segmentation problem as a geometric optimization problem
- Surprisingly, convex hull plays an important role.

Image segmentation problem

- $G = n \times n pixel grid (for example, n = 1024)$
- A digital picture is a function **f** (x) on G to represent brightness/color of each pixel x
 - f(x) is real valued (monochromatic picture)
 - In RGB space for color pictures
- **Object image** is a subset S of G to represent an object in the picture.
- Image segmentation: Clip the object image

Our formulation

- Approximation by two-valued function
 - Picture: function f from G to real values
 - Find the L₂ nearest two-valued function g to f

$$g(p) = a (p \in R)$$
Image

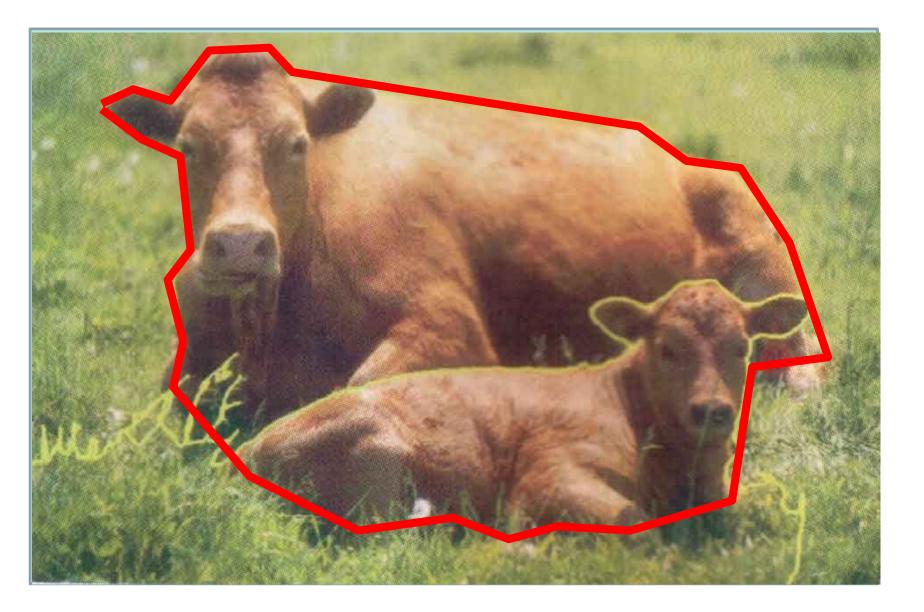
$$g(p) = b (p \notin R)$$
background
Minimize || f-g ||₂

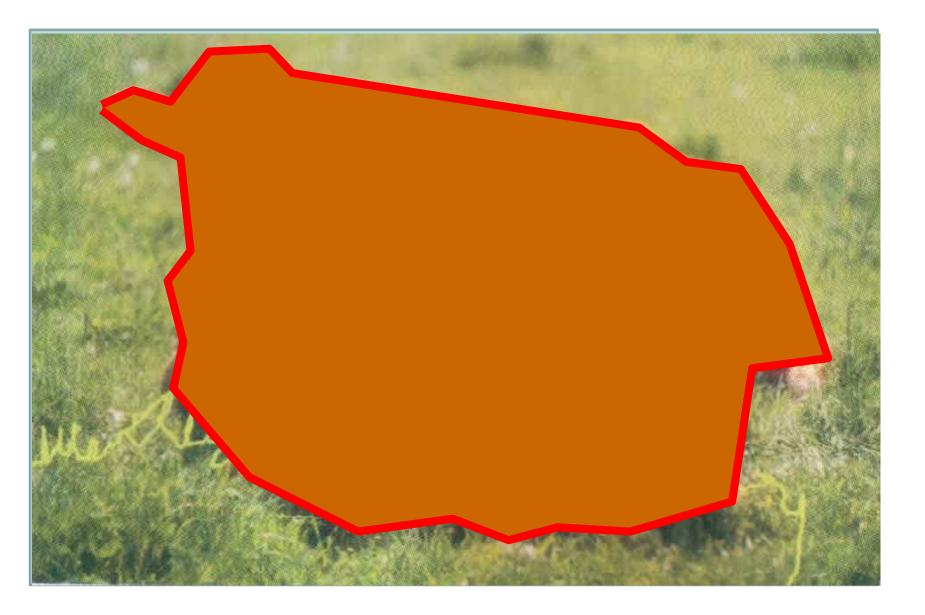
- a and b become average values μ(R) and μ (G-R) of f(p) in R and G-R, respectively.
- That is, minimize the intraclass variance

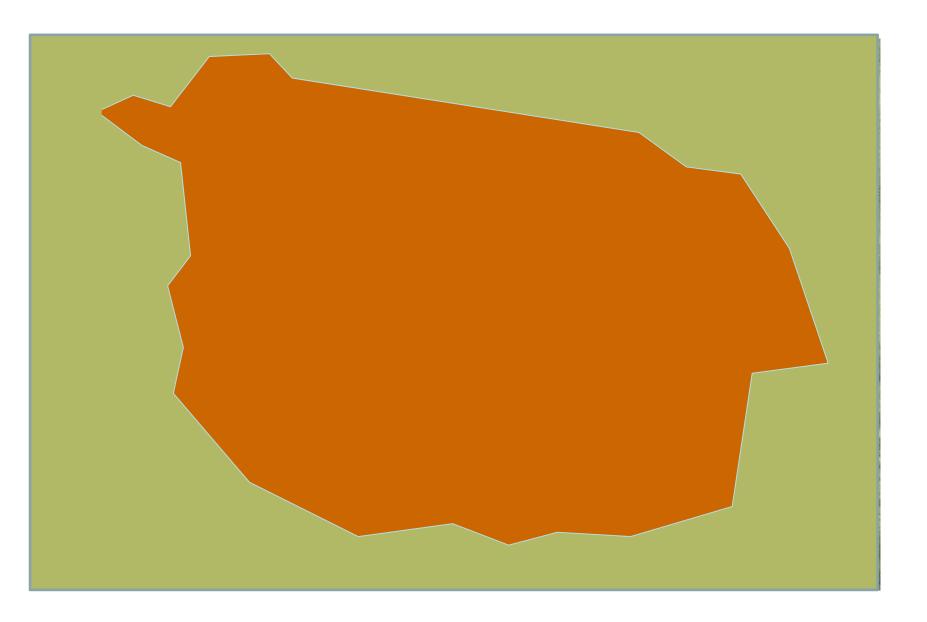
$$Var(R) = \sum_{p \in R} (f(p) - \mu(R))^2 + \sum_{p \in G-R} (f(p) - \mu(G-R))^2$$

Intraclass variance minimization $Var(R) = \sum_{x \in R} (f(x) - \mu(R))^2 + \sum_{x \in G-R} (f(x) - \mu(G-R))^2$

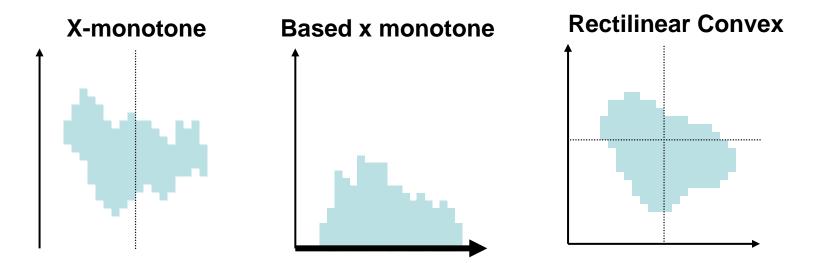
- Easy if R can be arbitrary (disconnected) region.
 Least-square threshold selection (Ohtsu, 1978)
 Collect pixels brighter than a threshold θ
- Reasonable formulation: Give a family **F** of regions of good shapes, and find $R \in F$ minimizing Var (R)







Typical Region Families



X-monotone: Intersection with any vertical line is a segment. (bounded by two x-monotone chains)

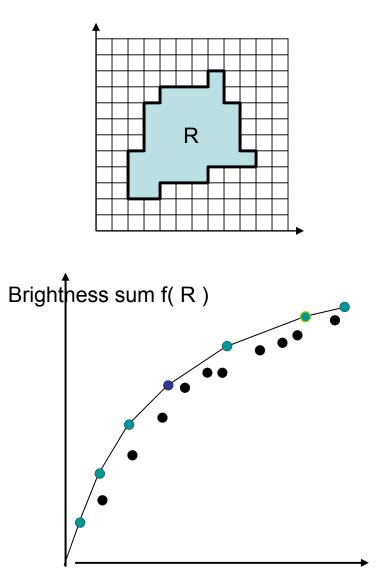
Based (x-)monotone: Region bounded by a monotone chain and a baseline (x-axis)

Rectilinear Convex: X-monotone and Y-monotone region.

Solution (Asano-Chen-Katoh-T 96)

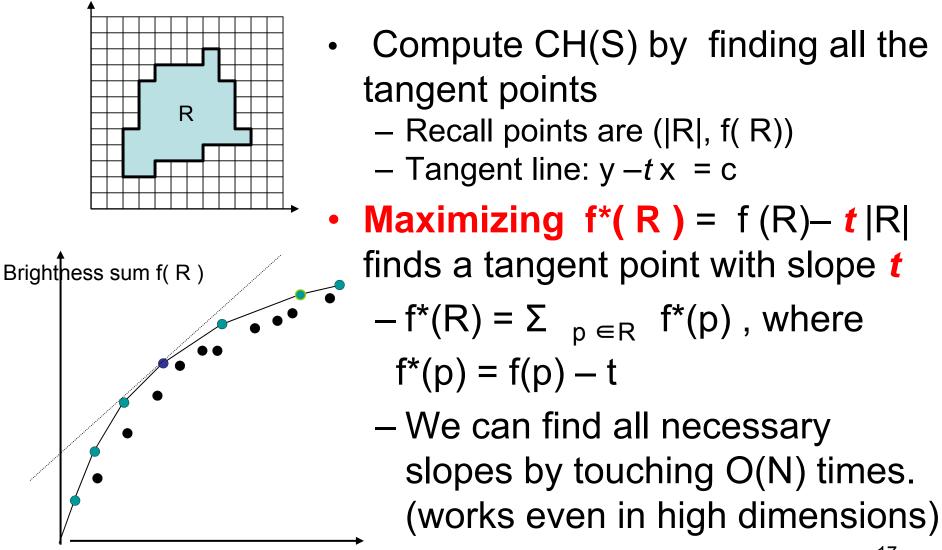
- Idea :
 - If we fix the number k= |R| of pixels in R, Var(R) is minimized if the sum $f(R) = \sum_{p \in R} f(p)$ is maximized (or minimized).
 - To compute such R is NP-hard even for the base monotone regions
 - Because Var (R) has convexity, we can use convex hull computation to solve it.

Convex hull computation

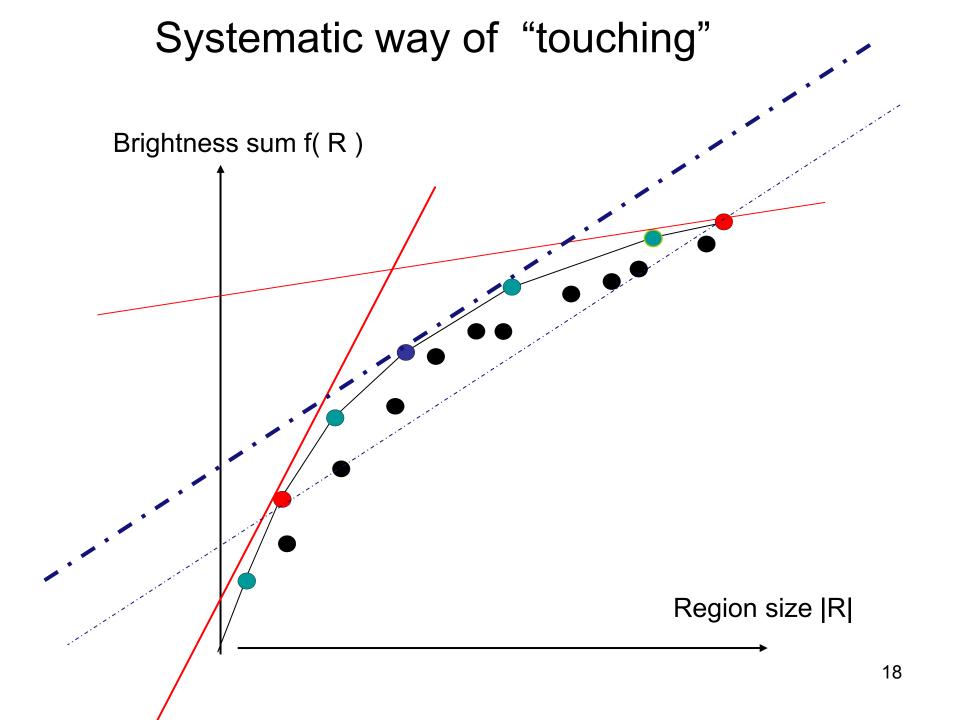


- Consider S = {(|R|, f(R)): R \in **F**}.
- F has an exponential number of regions in general
- Thus, we cannot compute S
- Fortunately, CH(S) has at most N=n² points
 - Output size is small.
- Var(R) is maximized at a point on CH(S) (by its convexity)
- Problem: How can we compute CH(S) without knowing S explicitly

Convex hull computation by "touching" it



Region size |R|



The problem we need to solve

Maximum weight region problem: Given a function f*(p) on G, find the region R in the region family F maximizing f* (R)

History: Programming Pearls (1984), column 8 (J. Bentley's famous column CACM)

- How to solve it if F is
 - the family of all rectangles
 - the family of all intervals in the onedimensional array

Maximum weight region

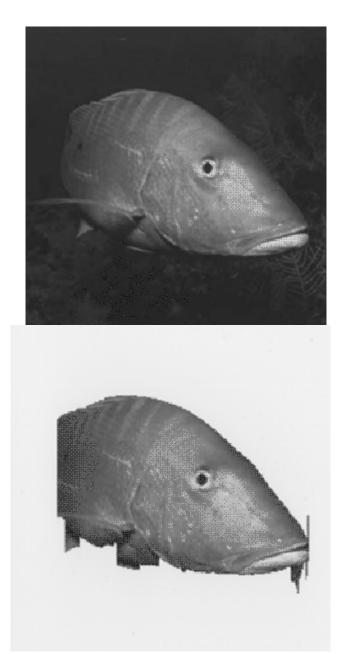
Maximum weight region problem: Given a function f*(p) on G, find the region R in the region family F maximizing f* (R)

X-monotone

Easy to solve if **F** is the family of

- Based x-monotone regions
- (Connected) x-monotone regions
- Rectilinear convex regions

NP-hard for the family of all connected regions



I was lucky to find unexpected applications and extensions

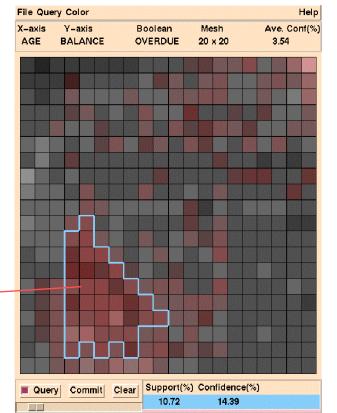
•Data Mining Application: Optimized Numeric Association Rules (SIGMOD 96, VLD96, 98, KDD 97)

SONAR

(System for Optimized Numeric Association Rules)

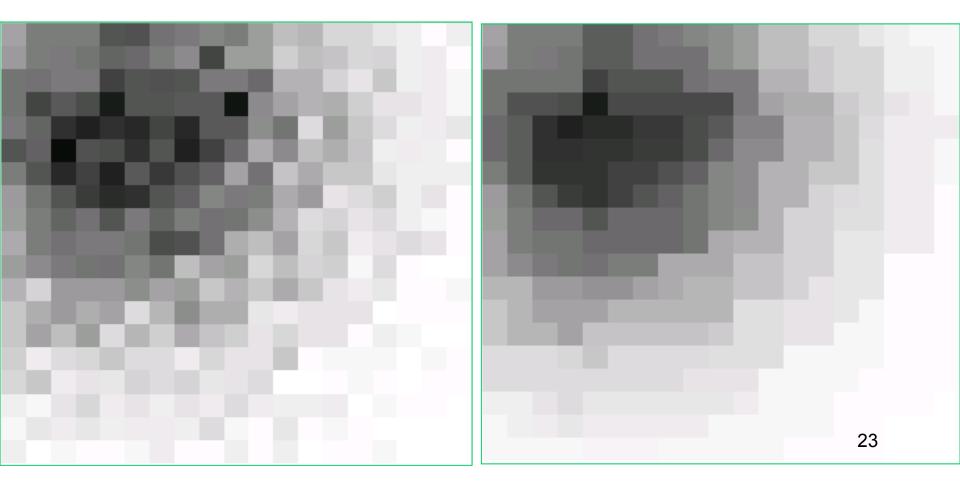
Find a rule to detect unreliable customers using a customer database

(Age, Balance) $\in \mathbb{R} \iff$ \Rightarrow (CardLoanDelay = yes)



22

Pyramid approximation and layered rule (Chun-Sadakane-T 03, Chen-Chun-Katoho-T 04) Instead of two-valued function, we can construct the optimal multilayer function to approximate the input f.



Remained problems

- The region families are very special
- How to deal with more flexible regions
 - A region consisting of a few basic shapes
 - Convex region, Star-shaped region

