
Range searching 

• Given a faimly F of regions and a set S of n 
points in the d-dimensional space,  construct a 
data structure D(S), such that we can do the 
following query efficiently.

• Reporting range query:   Given any region R 
in F, report the set of points of S in R.

• Counting range query:  answer the number of 
points of S in R



Rectangular range searching(d=2) 

• Given a set S of n points in the plane,  
construct a data structure D(S), such that we 
can do the following query efficiently.

• Rectangle range query (counting):   Given an 
axis parallel rectangle R, report the set of 
points of S in R.

• Answer the number of points of S in  R 
efficiently





Example of application

• Given a database of  customers with 
(income,  sales),  report the set of customers 
such that  
– 2M < income < 2.5M
– 100K< sales< 300K



Halfplane range searching(d=2) 

• Given a set S of n points in the plane,  
construct a data structure D(S), such that we 
can do the following query efficiently.

• Halfplane range query:   Given a halfplane H, 
report the set of points of S in H efficiently 

• Answer the number of points of S in H.





Circle range searching(d=2) 

• Given a set S of n points in the plane,  
construct a data structure D(S), such that we 
can do the following query efficiently.

• Circle  range query:   Given a circle C, report 
the set of points of S inside C.  

• Answer the number of points of S in C.





Example

• Answer the set of Italian restaurants  within 
distance of 300 M from Sendai station.



Interval Range searching  (d= 1)
• Given a set S of n data with real key values, 

construct a data structure D(S), such that we 
can do the following query efficiently.

• Interval range query (reporting):   Given an 
interval I, report the set of data of S such that 
the key values are in  I. 

• Interval range query (counting): Answer the 
set of data of S whose key values are in I. 



Theorem  1
There is an O(n) size data structure D(S) to 
answer the reporting interval range query in 
O(k+log n) time, where k is the number of 
reported elements. Also, the counting interval 
query can be compted in O(log n) time using 
O(n) size data structure.



Interval Range searching  (d= 1)
• Given a set S of n data with real key values 

key(x) and real data value data(x) for each x of 
S, construct a data structure D(S), such that we 
can do the following query efficiently.

• Range minimum query :   Given an interval I, 
report  x of S such that the key(x) values are in  
I and minimizing data(x).
– Very important in data compression and data 

mining. 



Interval tree
• Store n data into a binary tree T(S)
• The root of the tree contains S
• The left child is T(S1), where S1 is the set of 

the n/2 data with small key values
• The right child is T(S2), where S2 = S －S1 

A set stored at a vertex of the interval tree 
is called a primary set.



1,3,5,6,8,10,13,14

1,3,5,6 8,10,13,14

5,61,3 13,148,10

1 3 65 108 1413



Interval query using T(S)

• Lemma 1. 
For any interval I,  S ∩ I is represented as a 

union of O(log n) primary sets.
• Lemma 2. 
The primary sets considered in Theorem 1 can 

be computed in O(log n) time.
• Theorem 2．The range minimum query can 

be computed in O(log n) time 



Rectangular range searching(d=2) 

• Given a set S of n points in the plane,  
construct a data structure D(S), such that we 
can do the following query efficiently.

• Rectangle range query (counting):   Given an 
axis parallel rectangle R, report the set of 
points of S in R.

• Answer the number of points of S in  R 
efficiently



Rectangular range searching
• Theorem 3
There is a data structure of size O(n log n) to 

answer the reporting range query in O(k + log n) 
time , where k is the number of reported elements.

• Theorem 4.  
There is a data structure of size O(n log n) to answer 

the counting range query in O( log  2 n) time. 
• Theorem 5.  The counting range query can be 

done in O( log n) time using an O( n log n) size 
data structure.











Idea

• We can find the set of points locating in a 
given vertical slab
– Use interval tree on x-values.

• Then, we can find the set of points locating 
in the horizontal slab
– Use interval tree of y-values. 
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Analysis
• Size of  data structure:  O( n log n)
• Query:  O( log 2 n)
• Improvement  to O(log  n ) search

– Similar list search method
– Fractional Cascading 

• Counting query
• High dimensional analogue 



Halfplane range searching(d=2) 

• Given a set S of n points in the plane,  
construct a data structure D(S), such that we 
can do the following query efficiently.

• Halfplane range query:   Given a halfplane H, 
report the set of points of S in H efficiently 

• Answer the number of points of S in H.





Onion data



Halfplane reporting query

• Data structure: Onion data structure
– Chazelle et al 1982

• Query by a halfplane H
– Find all convex chains intersecting H

• Find from the outside
• Intersecting edges are found

– Trace on convex chains to find all points in the 
range

• O( k log n ) time complexity
• Improved to O(k + log n)



Halfplane conting query
• The onion method is expensive if k is large
• The first idea : A.C.Yao-F. Yao  (1985)

– By space subdivision  with three lines 
• Next idea : H. Edelsbrunner (1986)

– By Ham-Sandwich Cut 
• Next:  D. Hausller and E. Welzl (1987)

– epsilon-net and epsilon sampling
• Next step:  E. Welzl (1988)

– By low stabbing spanning tree
• Final step:  J. Matousek (1990)

– By  cutting of arrangement



Ham sandwich cut

• Theorem
Given n red points and m blue points in the plane, 
there is a line L such that at most n/2 red points  
and m/2 blue points lies in each side of L 

• Obtained from Borsuk-Ulam’s theorem 
– Any continuous map from circle (sphere) to line 

(space) has an antipodal pair to map to a same point.
– J. Matousek:  Using the Borsuk-Ulam’s Theorem





Equi-partition pair of lines 





How to search? 

• Suppose lines L and  L’ partition the space 
into four cones. 

• Then, any line M intersects at mot three 
cones.

• This gives the  following recursion of the 
search
– T(n)  = 3 T(n/4)  + O(1) 
– This gives T(n) = O( n 0.７ )
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