Range searching

- Given a faimly F of regions and a set S of n points in the d-dimensional space, construct a data structure D(S), such that we can do the following query efficiently.
- Reporting range query: Given any region R in F, report the set of points of S in R.
- Counting range query: answer the number of points of S in R

Rectangular range searching(d=2)

- Given a set S of n points in the plane, construct a data structure D(S), such that we can do the following query efficiently.
- Rectangle range query (counting): Given an axis parallel rectangle R, report the set of points of S in R.
- Answer the number of points of S in R efficiently

Example of application

- Given a database of customers with (income, sales), report the set of customers such that
 - 2M < income < 2.5M
 - 100K< sales< 300K</p>

Halfplane range searching(d=2)

- Given a set S of n points in the plane, construct a data structure D(S), such that we can do the following query efficiently.
- Halfplane range query: Given a halfplane H, report the set of points of S in H efficiently
- Answer the number of points of S in H.

Circle range searching(d=2)

- Given a set S of n points in the plane, construct a data structure D(S), such that we can do the following query efficiently.
- Circle range query: Given a circle C, report the set of points of S inside C.
- Answer the number of points of S in C.

Example

• Answer the set of Italian restaurants within distance of 300 M from Sendai station.

Interval Range searching (d=1)

- Given a set S of n data with real key values, construct a data structure D(S), such that we can do the following query efficiently.
- Interval range query (reporting): Given an interval I, report the set of data of S such that the key values are in I.
- Interval range query (counting): Answer the set of data of S whose key values are in I.

Theorem 1 There is an O(n) size data structure D(S) to answer the reporting interval range query in $O(k+\log n)$ time, where k is the number of reported elements. Also, the counting interval query can be compted in $O(\log n)$ time using O(n) size data structure.

Interval Range searching (d=1)

- Given a set S of n data with real key values key(x) and real data value data(x) for each x of S, construct a data structure D(S), such that we can do the following query efficiently.
- Range minimum query : Given an interval I, report x of S such that the key(x) values are in I and minimizing data(x).
 - Very important in data compression and data mining.

Interval tree

- Store n data into a binary tree T(S)
- The root of the tree contains S
- The left child is T(S₁), where S₁ is the set of the n/2 data with small key values
- The right child is $T(S_2)$, where $S_2 = S S_1$

A set stored at a vertex of the interval tree is called a primary set.

Interval query using T(S)

• Lemma 1.

For any interval I, $S \cap I$ is represented as a union of O(log n) primary sets.

- Lemma 2.
- The primary sets considered in Theorem 1 can be computed in O(log n) time.
- Theorem 2. The range minimum query can be computed in O(log n) time

Rectangular range searching(d=2)

- Given a set S of n points in the plane, construct a data structure D(S), such that we can do the following query efficiently.
- Rectangle range query (counting): Given an axis parallel rectangle R, report the set of points of S in R.
- Answer the number of points of S in R efficiently

Rectangular range searching

- Theorem 3
- There is a data structure of size $O(n \log n)$ to answer the reporting range query in $O(k + \log n)$ time, where k is the number of reported elements.
- Theorem 4.
- There is a data structure of size $O(n \log n)$ to answer the counting range query in $O(\log 2 n)$ time.
- Theorem 5. The counting range query can be done in O(log n) time using an O(n log n) size data structure.

Idea

- We can find the set of points locating in a given vertical slab
 - Use interval tree on x-values.
- Then, we can find the set of points locating in the horizontal slab
 - Use interval tree of y-values.

Analysis

- Size of data structure: O(n log n)
- Query: O(log ² n)
- Improvement to O(log n) search
 - Similar list search method
 - Fractional Cascading
- Counting query
- High dimensional analogue

Halfplane range searching(d=2)

- Given a set S of n points in the plane, construct a data structure D(S), such that we can do the following query efficiently.
- Halfplane range query: Given a halfplane H, report the set of points of S in H efficiently
- Answer the number of points of S in H.

Halfplane reporting query

- Data structure: Onion data structure
 Chazelle et al 1982
- Query by a halfplane H
 - Find all convex chains intersecting H
 - Find from the outside
 - Intersecting edges are found
 - Trace on convex chains to find all points in the range
- O(k log n) time complexity
- Improved to $O(k + \log n)$

Halfplane conting query

- The onion method is expensive if k is large
- The first idea : A.C.Yao-F. Yao (1985)
 - By space subdivision with three lines
- Next idea : H. Edelsbrunner (1986)
 - By Ham-Sandwich Cut
- Next: D. Hausller and E. Welzl (1987)
 - epsilon-net and epsilon sampling
- Next step: E. Welzl (1988)
 - By low stabbing spanning tree
- Final step: J. Matousek (1990)
 - By cutting of arrangement

Ham sandwich cut

• Theorem

Given n red points and m blue points in the plane, there is a line L such that at most n/2 red points and m/2 blue points lies in each side of L

- Obtained from Borsuk-Ulam's theorem
 - Any continuous map from circle (sphere) to line (space) has an antipodal pair to map to a same point.
 - J. Matousek: Using the Borsuk-Ulam's Theorem

How to search?

- Suppose lines L and L' partition the space into four cones.
- Then, any line M intersects at mot three cones.
- This gives the following recursion of the search
 - T(n) = 3 T(n/4) + O(1)

- This gives $T(n) = O(n^{0.7})$