数理計画法 第10回

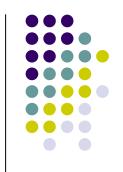
ネットワーク計画 3. 最小費用フロー問題

担当: 塩浦昭義

(情報科学研究科 准教授)

shioura@dais.is.tohoku.ac.jp

復習:最大フロー問題

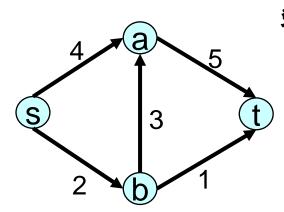


目的:供給点 s から需要点 t にフローをたくさん流したい 条件1(容量条件):

0 ≤ 各枝を流れるフローの量 ≤ 枝の容量 条件2(流量保存条件):

頂点から流れ出すフローの量= 流れ込むフローの量

問題例と定式化



最大化 条件

$$f$$
 $x_{sa} + x_{sb} = f$
 $x_{at} - x_{sa} - x_{ba} = 0$
 $x_{ab} + x_{bt} - x_{sb} = 0$
 $-x_{at} - x_{bt} = -f$
 $0 \le x_{sa} \le 4$, $0 \le x_{sb} \le 2$, $0 \le x_{ba} \le 3$, $0 \le x_{at} \le 5$, $0 \le x_{bt} \le 1$

応用:供給・需要を満たすフローを求める

入力:有向グラフ G = (V, E)

各枝 (i, j) ∈ E の容量 u_{ij} ≧ 0

各頂点 i ∈ Vの供給・需要量 b_i (ただし b_i の和は0)

(b_i >0→ i は供給点, b_i<0→ i は需要点)

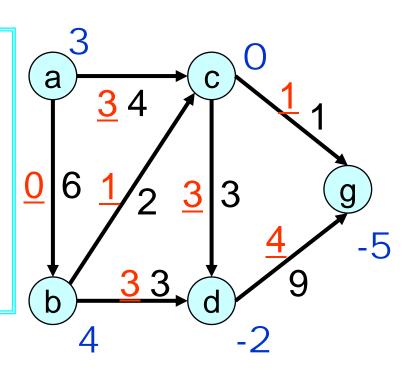
出力:次の条件を満たすフロー

●各頂点i ∈Vでの供給・需要条件

(i から流出するフロー量)

ー(i に流入するフロー量) = b_i

$$0 \le x_{ij} \le u_{ij}$$



応用:供給・需要を満たすフローを求める

最大フロー問題に帰着する

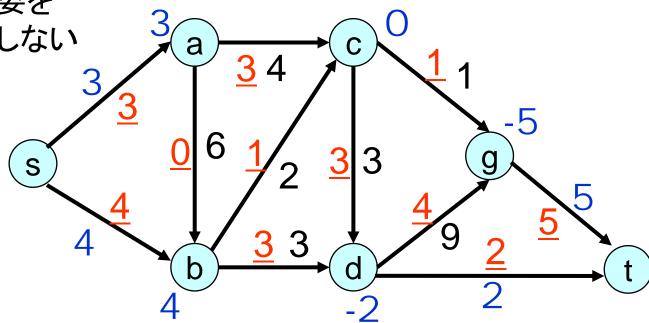
- (1)新たな頂点 s(供給点), t(需要点)を追加
- (2)b_i > 0 ならば枝(s, i)を追加, 容量はb_i
- (3)b_i < 0 ならば枝(i, t)を追加, 容量は b_i
- (4)最大フローを求める.

(5)各枝(s, i)に対し x_{si} = b_i → 供給・需要を満たすフローが得られる

それ以外→供給・需要を

満たすフローは存在しない

需要・供給を 満たすフローが 存在

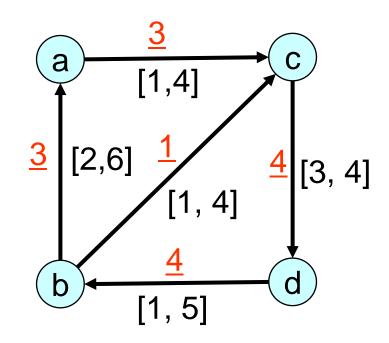


入力:有向グラフ G = (V, E)

各枝 (i, j) ∈ E フローの上限値 u_{ij}, 下限値 l_{ij} (0≦l_{ij}≦u_{ij})

出力:次の条件を満たすフロー

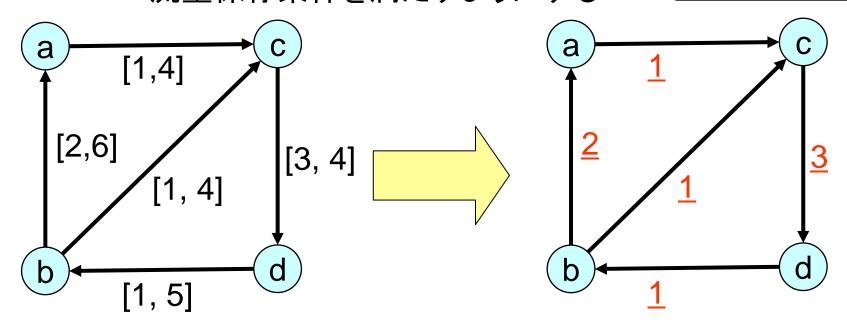
- ●各頂点i ∈V での流量保存条件
- (i から流出するフロー量)
 - ー(i に流入するフロー量)=0
- 各枝 (i, j) の上下限条件I_{ii} ≤ x_{ii} ≤ u_{ii}



供給・需要を満たすフロー(I_{ii}=0)を求める問題に帰着する

- 流量保存条件を無視して、x_{ii} = I_{ii} というフローを流す
 - 流量保存条件が成り立っている→OK
 - 流量保存条件が成り立っていない
 - →各枝のフローを増加させることにより、 流量保存条件を満たすようにする

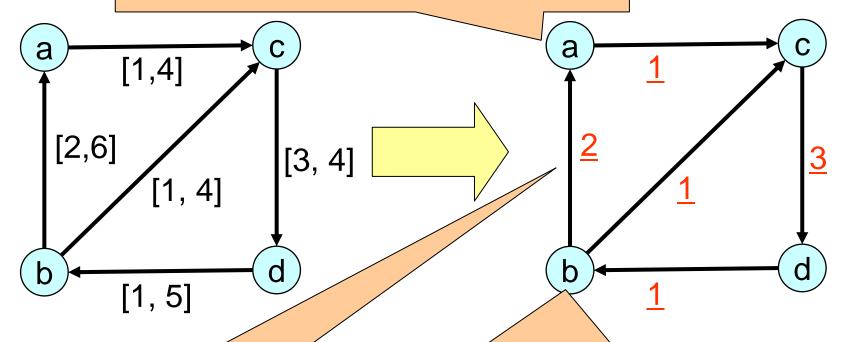
どのようにして フローを増加 させるか?



(入ってくるフロー量: 2)

> (出て行くフロー量: 1)

→ 出て行くフローを1だけ増やしたい



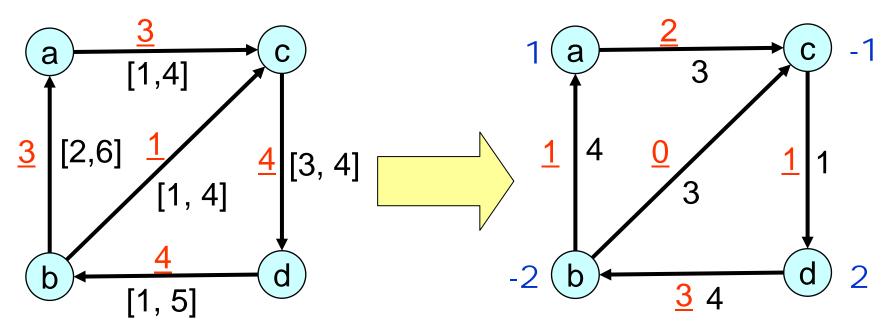
現在のフロー量は x_{ii} = I_{ii}

→増加できる量は 最大で u_{ii} – I_{ii} (入ってくるフロー量: 1)

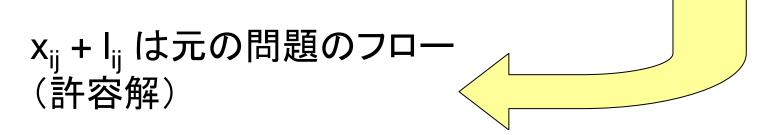
く (出て行くフロー量:3)

→ 入ってくるフローを2だけ増やしたい

供給・需要を満たすフローを求める問題に帰着される



この問題のフロー x_{ii} が得られた



最小費用フロー問題の定義

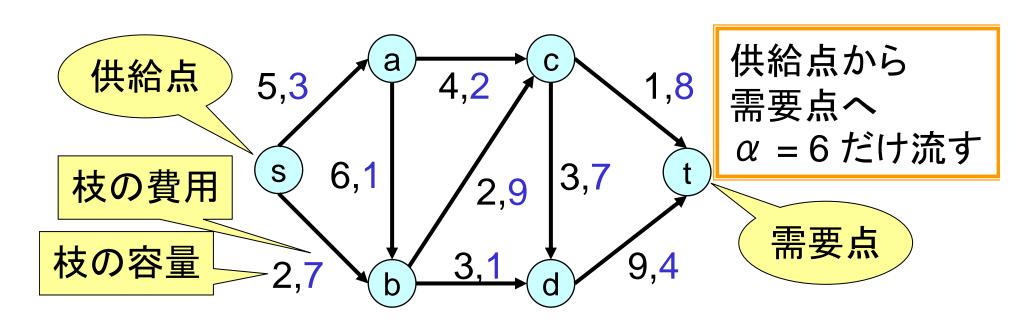
入力:有向グラフG=(V, E)

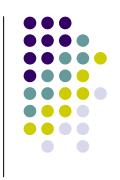
供給点 $s \in V$, 需要点 $t \in V$,

需要(供給)量 $\alpha > 0$

各枝 (i, j) ∈ V の容量 u_{ij} ≧ 0, 費用 c_{ij}

出力:需要供給を満たすフローで総費用が最小のもの





最小費用フロー問題の定式化

各枝の費用 ×フロー量 の和

条件 $0 \le x_{ij} \le u_{ij}$ ((i,j) $\in E$)

各枝の容量条件

 $\Sigma\{\mathbf{x}_{kj} \mid (k,j) \text{ は k から出る}\} - \Sigma\{\mathbf{x}_{ik} \mid (i,k) \text{ は k に入る}\} = 0$ $(k \in V - \{s, t\})$

各頂点での 流量保存条件

需要供給量に関する条件

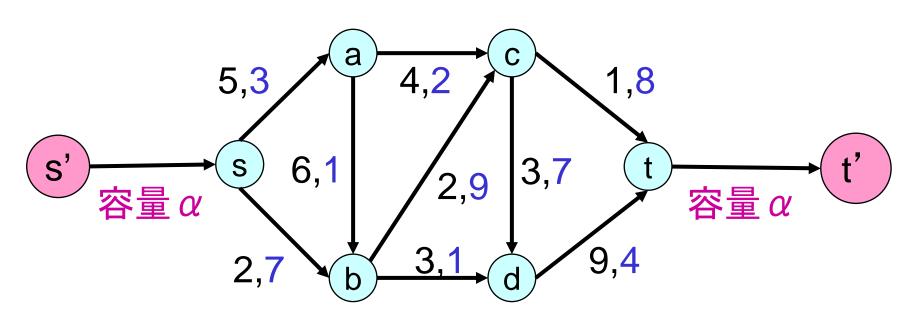
 $\Sigma\{\mathbf{x}_{sj} \mid (s,j) \text{ は s から出る}\} - \Sigma\{\mathbf{x}_{is} \mid (i,s) \text{ は s に入る}\} = \alpha$ $\Sigma\{\mathbf{x}_{tj} \mid (t,j) \text{ は t から出る}\} - \Sigma\{\mathbf{x}_{it} \mid (i,t) \text{ は t に入る}\} = -\alpha$

需要供給を満たすフローの求め方

- (1)人工問題として最大フロー問題を作る
- (2)人工問題の最大フローにおいて

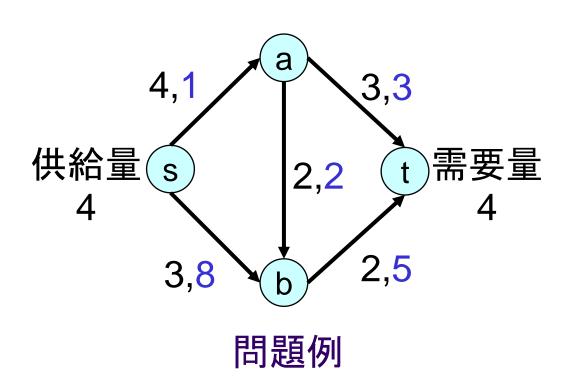
 $f = \alpha \Rightarrow 現在のフローは需要供給を満たす$

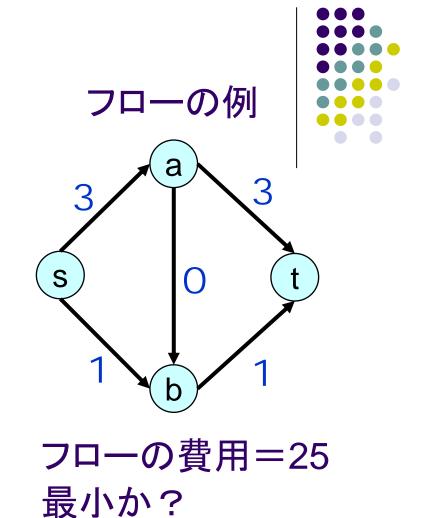
 $f < \alpha \Rightarrow$ 需要供給を満たすフローは存在しない



各枝の費用は無視

フローの最適性判定



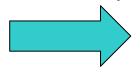


どうやって最小費用フローであることを判定するか? ーーー 残余ネットワークの利用

残余ネットワークの作り方(その1)

最大フローのときとほとんど同じ作り方

x = (x_{ij} | (i,j) ∈ E): 現在のフロー



フロー x に関する残余ネットワーク $G^{x}=(V, E^{x})$

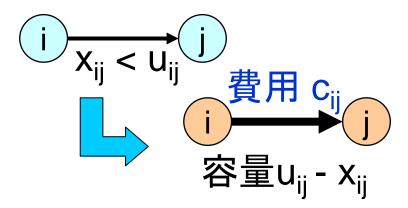
 $E^{x} = F^{x} \cup R^{x}$

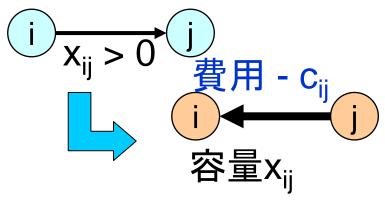
順向きの枝集合

 $F^{x} = \{ (i, j) \mid (i, j) \in E, x_{ij} < u_{ij} \}$ 容量 $u^{x}_{ij} = u_{ij} - x_{ij},$ 費用 c_{ij}

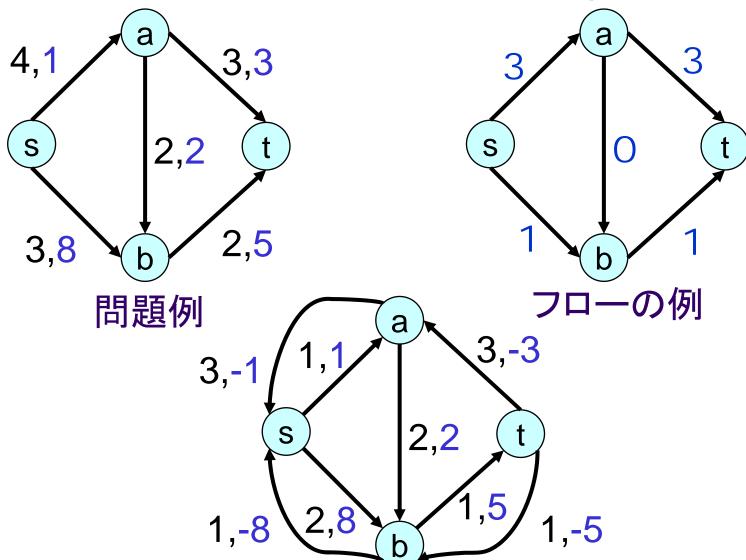
逆向きの枝集合

 $R^{x} = \{ (j, i) \mid (i, j) \in E, x_{ij} > 0 \}$ 容量 $u^{x}_{ji} = x_{ij},$ 費用 - c_{ij}



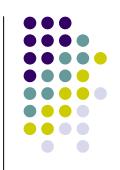


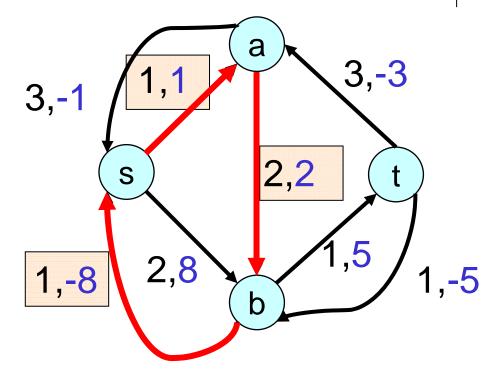
残余ネットワークの作り方(その2)



残余ネットワークの性質(その1)

残余ネットワークの閉路に注目





閉路の容量α

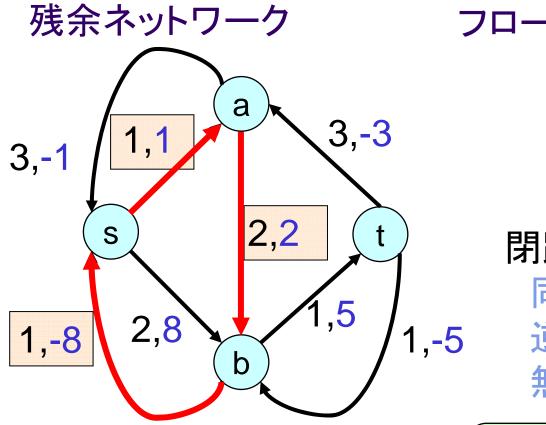
=閉路に含まれる枝の容量の最小値=1

閉路の費用γ

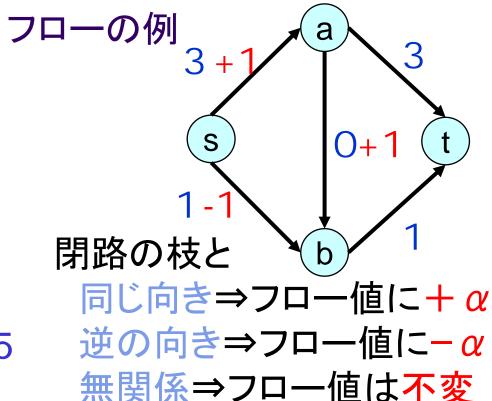
=閉路に含まれる枝の費用の和=-5

残余ネットワークの性質(その2)

残余ネットワークの閉路を用いてフローを更新



閉路の容量 $\alpha = 1$ 閉路の費用 $\gamma = -5$



この更新により、フローの 費用は $\alpha \gamma$ (=-5)増加

残余ネットワークの性質(その3)

以上の議論より、以下が成り立つ

定理1:残余ネットワークに費用が負の閉路が存在

⇒ フローの費用を減少させることが可能

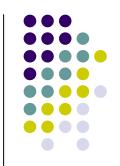
⇒ 現在のフローは費用最小でない

実は、逆も成り立つ(証明は後で)

定理2:現在のフローは費用最小でない

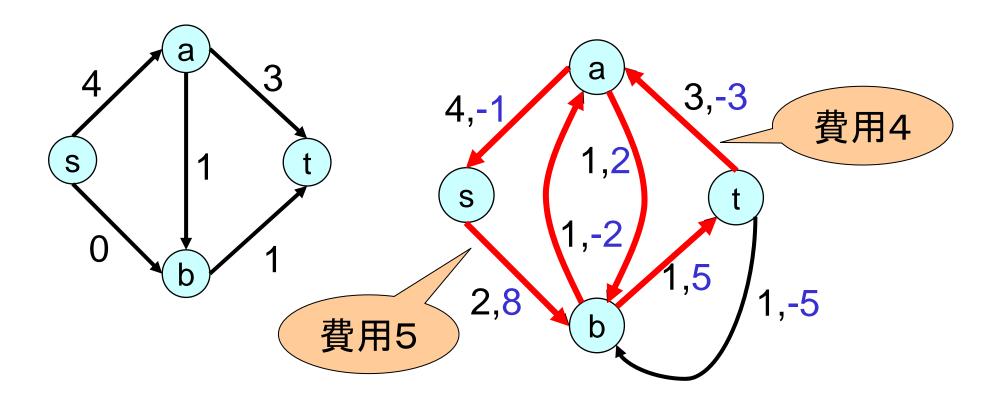
⇒ 残余ネットワークに費用が負の閉路が存在

残余ネットワークの性質(その4)



修正後のフロー

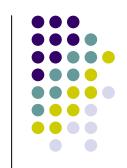
残余ネットワーク



費用が負の閉路がない

⇒ 現在のフローは費用最小

負閉路消去法



最小費用フローを求めるためのアルゴリズム

ステップO:人工問題を解いて、需要供給量を満たす フローを求める

ステップ1:現在のフローに関する残余ネットワークを作る

ステップ2:残余ネットワークに費用が負の閉路が 存在しない⇒ 現在のフローは費用最小(終了)

ステップ3:残余ネットワークの費用が負の閉路を求め、 それを用いて現在のフローを更新する

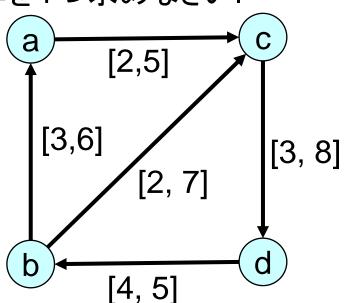
ステップ4:ステップ1へ戻る

レポート問題

問1: 以下のようなネットワークを考える.

[a, b]は各枝のフロー量xの上下限(a: 下限値, b: 上限値)を表す. このネットワークにおいて、枝のフロー量の上下限制約を満たし、 かつ全ての頂点において流量保存条件を満たすフローを求めたい.

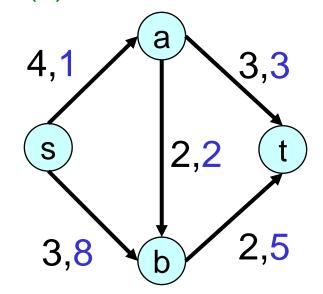
- (1)この問題を、需要・供給を満たすフローを求める問題に 帰着しなさい。
- (2)帰着して得られた問題の解を1つ求めなさい.
- (3)(2)の結果を使い、元の問題の解を1つ求めなさい。



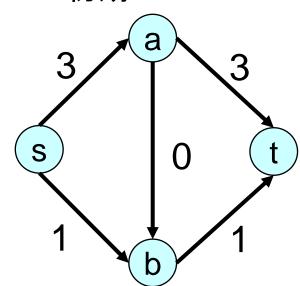
レポート問題

問2: 次の最小費用フロー問題に対して、

- (1)定式化せよ
- (2)与えられた初期フローに対して負閉路消去法を適用し、 最小費用フローを求めよ(途中の計算過程も省略せず書くこと)
 - (a) 需要供給量4



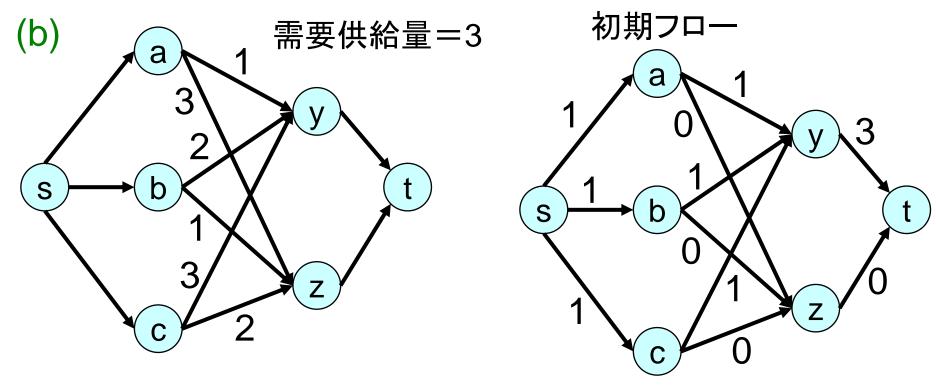
初期フロー



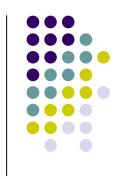
レポート問題

問3: 次の最小費用フロー問題に対して、

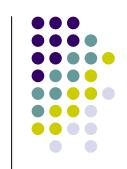
- (1) 定式化せよ
- (2)与えられた初期フローに対して負閉路消去法を適用し, 最小費用フローを求めよ(途中の計算過程も省略せず書くこと)



枝(y, t), (z, t) の容量は3, それ以外の枝の容量は1 s から出る枝とt に入る枝の費用は0, それ以外は各枝の数値を参照



応用:プロ野球リーグの優勝可能性 判定と最大フロー問題



アメリカ ナショナルリーグ東地区の順位表

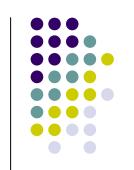
	勝ち	負け	残り試合数				
	数	数	ブレー ブス	フィ リーズ	メッツ	エクス ポス	
ブレー ブス	83	71		1	6	1	
フィリーズ	80	79	1		0	2	
メッツ	78	78	6	0		0	
エクス 🧼 ポス	77	82	1	2	0		

エクスポスの 優勝可能性

× 残り全勝して も80勝止まり

各チームの優勝可能性を判定したい

プロ野球リーグの優勝可能性判定 と最大フロー問題



アメリカ ナショナルリーグ東地区の順位表

	勝ち	負け	残り試合数				
	数	数	ブレー ブス	フィリーブ	メッツ	エクスポマ	
ブレー ブス	83	71	4 1134	─ [*] O勝 ⁻ 1	−0勝− <mark> </mark> 6	O勝 ^一 1	
フィリーズ	80	79	─1勝 [△] 1		0	一 _{2勝} - 2	
メッツ	78	78	一 _{6勝} 6	0		0	
エクス 🍪	77	82	1	2	0		

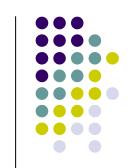
ブレーブスが全敗で 同じ勝ち数に

残り試合全勝で83勝

メッツが84勝

フィリーズの 優勝可能性

プロ野球リーグの優勝可能性判定 と最大フロー問題

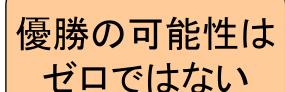


アメリカ ナショナルリーグ東地区の順位表

	勝ち負け		残り試合数				
	数	数	ブレー ブス	フィリーズ	メッツ	エクス ポス	
ブレー ブス	83	71		1	6	1	
フィ りーズ	80	79	1		0	2	
メッツ	78	78	6	0		0	
エクス 🧼 ポス	77	82	1	2	0		

各チームの優勝可能性を判定したい

全ての試合で 下位チームが 上位チームに 勝った場合



プロ野球リーグの優勝可能性判定

と最大フロー問題

では、次の場合は?(アメリカンリーグ東地区)

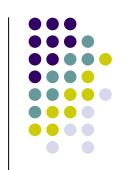
他の地区所属のチーム との試合

		_,	残り試合数					
	勝	敗	ヤンキース	オリオー ルズ	レッドソックス	ブルー ジェイズ	タイガー ス	その他
ヤンキース	75	59		3	8	7	3	7
オリオールズ	71	63	3		2	7	4	15
レッドソックス	69	66	8	2		0	0	17
ブルージェイズ	63	72	7	7	0		0	13
タイガース	49	86	3	4	0	0		20

タイガースは残り試合全勝すると76勝 ヤンキースの勝ち数以上→優勝の可能性?

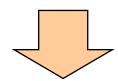
最大フロー問題を使って判定ができる

プロ野球リーグの優勝可能性判定 と最大フロー問題



タイガースにとって都合の良いケースのみ考える

- ●タイガースは残り全勝
- 東地区の他チームは他地区との試合において全敗

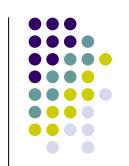


東地区の他チーム同士の試合結果のみ考えれば良い

- ■どのようなケースにおいても77勝以上のチームが現れる
- → 優勝の可能性なし 需要供給を満たすフローが存在しない
- ■あるケースにおいては、他チームは全て76勝以下
- → 優勝の可能性あり <a>需要供給を満たすフローが存在する

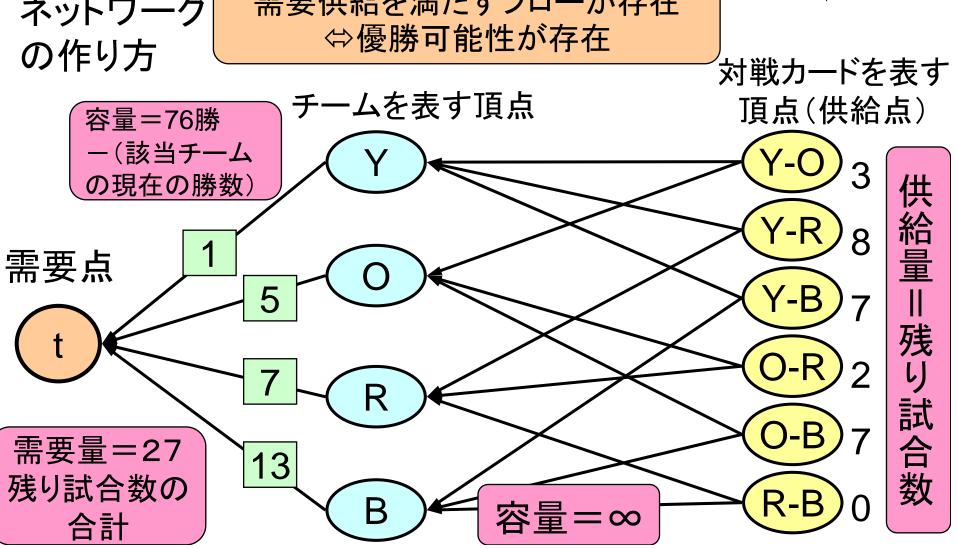
需要供給を満たすフローを求める問題に帰着

プロ野球リーグの優勝可能性判定 と最大フロー問題



ネットワーク

需要供給を満たすフローが存在 ⇔優勝可能性が存在



プロ野球リーグの優勝可能性判定 と最大フロー問題 YとOの対戦カード Yの勝数はタイガー から Yは各対戦カー スの最大勝ち数76 合計3の勝数を ドから

YとOに供給

供

給量

残

試

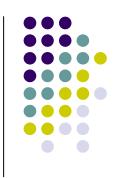
合

数

を超えてはいけない

勝数を受け取る 容量=76勝 ー(該当チーム の現在の勝数) 需要量=27 13 残り試合数の 合計

演習問題(レポート提出の必要なし)



問題:ブルージェイズの優勝可能性を判定してみよ