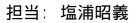
数理計画法 第3回

2.3 諸定理

2.4 単体法



(情報科学研究科 助教授)

shioura@dais.is.tohoku.ac.jp

復習:弱双対定理

弱双対定理

x: 主問題の許容解, y: 双対問題の許容解

xの目的関数値

 $_{i}C_{i}X_{i}$

ibiyi yの目的関数値

復習: 主問題と双対問題

主問題

双対問題

最小化 C₁X₁+···+C_nX_n

条件
$$a_{11}X_1 + \cdots + a_{1n}X_n$$
 b_1 条件 $a_{11}Y_1 + a_{21}Y_2 + \cdots + a_{m1}Y_m$ c_1

$$a_{21}X_1+\cdots+a_{2n}X_n$$

$$a_{m1}x_1+\cdots+a_{mn}x_n$$
 b

 $X_1 = 0, ..., X_n = 0$

主問題の i 番目の不等式 $a_{i1}x_1+\cdots+a_{in}x_n$ b_i

主問題の i 番目の変数

最大化 b₁y₁+b₂y₂+···+b_my_m

$$a_{21}X_1 + \cdots + a_{2n}X_n$$
 b_2 $a_{12}Y_1 + a_{22}Y_2 + \cdots + a_{m2}Y_m$ c_2

$$a_{m1}x_1 + \cdots + a_{mn}x_n$$
 b_m $a_{1n}y_1 + a_{2n}y_2 + \cdots + a_{mn}y_m$ c_n

$$y_1 = 0, y_2 = 0, ..., y_m = 0$$

双対問題の i 番目の変数

双対問題の i 番目の不等式 $a_{1i}y_1 + a_{2i}y_2 + \cdots + a_{mi}y_m \quad c_i$

弱双対定理の系(その1)

系2.2

x: 主問題の許容解, y: 双対問題の許容解

$$\sum_{j=1}^{n} c_{j} x_{j} = \sum_{i=1}^{m} b_{i} y_{i}$$

x: 主問題の最適解, y: 双対問題の最適解

証明 前回のレポート問題

弱双対定理の系(その2)

系2.1

主問題が非有界 双対問題は実行不可能 双対問題が非有界 主問題は実行不可能

証明: 対偶 (双対:実行可能 主:有界) を示す 双対問題が実行可能と仮定

y: 双対問題の許容解、 = b_iy_i 弱双対定理より、主問題の任意の許容解 x に対し

c_ix_i 主問題は有界

主問題と双対問題の答えの組合せ

			双対問題			
			実行可能		実行	
			最適解	非有界	不可能	
主	実行可能	最適解	(双対定理)	× (系2.1)	× (双対定理)	
問	前能	非有界	× (系2.1)	× (系2.1)	(系2.1)	
題	実行不可能		× (双対定理)	(系2.1)		

双対定理

定理2.3:

主問題または双対問題が最適解をもつ 他方も最適解をもち、かつ最適値が一致する

証明 後日

相補性定理

定理2.4:

x: 主問題の許容解, y: 双対問題の許容解

X、y は最適解

相補性条件

各 j = 1, ..., n について

i a{ij} y_i c_j と x_j 0 のどちらかは等号成立

各 i = 1, ..., m について

ia{ii} x_i b_i と y_i 0 のどちらかは等号成立

相補性定理

x: 主問題の許容解

y: 双対問題の許容解

X、y は最適解

 $_{i} a_{ii} x_{i} = b_{i}$ $\pm t x_{i} = 0$ (i = 1, 2, ..., m)

証明: 弱双対定理の証明より

$$\sum_{j=1}^{n} c_{j} x_{j} \ge \sum_{j=1}^{n} \left(\sum_{i=1}^{m} a_{ij} y_{i} \right) x_{j} = \sum_{i=1}^{m} \left(\sum_{j=1}^{n} a_{ij} x_{j} \right) y_{i} \ge \sum_{i=1}^{m} b_{i} y_{i}$$

x、yが最適 最初の項 = 最後の項

$$(a_{ij} y_i) x_j = c_i x_j, (a_{ij} x_j) y_i = b_i y_i$$

相補性

辞書(その1) 問題の変形 不等式標準形 一種の等式標準形 最小化 z 最小化 C₁X₁+···+C_nX_n 条件 z = 0 + $c_1 x_1 + \cdots + c_n x_n$ $X_{n+1} = -b_1 + a_{11}X_1 + \cdots + a_{1n}X_n$ $a_{m1}x_1+\cdots+a_{mn}x_n$ b_m $x_{n+m} = -b_m + a_{m1}x_1 + \cdots + a_{mn}x_n$ $X_1 = 0, ..., X_n = 0$ $x_1 = 0, ..., x_n = 0,$ $X_{n+1} = 0,, X_{n+m} = 0$ この等式制約のみで 問題を表現できる

2.4 単体法

- LPの最適解を求める
- 許容基底解を更新、目的関数値をより小さくする
- 有限解の繰り返しで終了

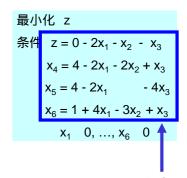
辞書(その2)

問題の変形

不等式標準形

最小化 $-2x_1 - x_2 - x_3$ 条件 $-2x_1 - 2x_2 + x_3 - 4$ $-2x_1 - 4x_3 - 4$ $4x_1 - 3x_2 + x_3 - 1$ $x_1 - 0, x_2 - 0, x_3 - 0$

一種の等式標準形



辞書

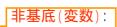
辞書に関する用語

$$z = 0 + c_1 x_1 + \dots + c_n x_n$$

$$x_{n+1} = -b_1 + a_{11} x_1 + \dots + a_{1n} x_n$$

$$\dots$$

$$x_{n+m} = -b_m + a_m x_1 + \dots + a_m x_n$$



右辺の変数

基底(変数):左辺に表れる変数

基底解ー非基底変数を0としたときの解(許容とは限らない)

$$z = 0 - 2x_1 - x_2 - x_3$$

$$x_4 = 4 - 2x_1 - 2x_2 + x_3$$

$$x_5 = 4 - 2x_1 - 4x_3$$

$$x_6 = 1 + 4x_1 - 3x_2 + x_3$$

基底解の更新方法 - ピボット演算

$$z = 0$$
 - $2x_1$ - x_2 - x_3 解を変化させて z を減ら $x_4 = 4 - 2x_1$ $2x_2 + x_3$ x_1 の係数 < 0 なので x_1 を増や

 $x_6 = 1 + 4x_1 - 3x_2 + x_3$

基底解(0,0,0,4,4,1)

目的関数値 z = 0

 $z = 0(-2x_1) - x_2 - x_3$ 解を変化させて z を減らしたい

x₁を増やす

x₄を だけ増やすと 目的関数値 z = -2

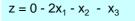
解は

(0.0,0,4-2,4-2,1+4)

許容性を満たすためには

辞書に関する用語(その2)

許容辞書 - 対応する基底解が許容解の辞書 基底解の各成分が非負



 $X_4 = 4 - 2X_1 - 2X_2 + X_3$

 $x_5 = 4 - 2x_1 - 4x_3$

基底解 = (0,0,0,4,4) 許容辞書

辞書の行列表現 右辺の係数だけを 書き出す

$z = 0 - 2x_1 - x_2$	x ₃
$x_4 = -4 - 2x_1 - 2x_2$	2 + X ₃
$x_5 = 4 - 2x_1$	- 4x ₃

基底解 = (0,0,0,-4,4) 許容辞書ではない

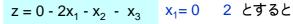
0

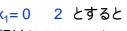
-4

-2 -2

-2

ピポット演算(その2)





 $x_4 = 4 - 2x_1 - 2x_2 + x_3$ 解は(2,0,0,0,0,9), z = -4

 $x_5 = 4 - 2x_1$ - $4x_3$ とくに、 基底変数 $x_4 = 4$ 0

基底(X_1 , X_5 , X_6), 非基底(X_4 , X_2 , X_3)

$$z = -4 + x_4 + x_2 - 2x_3$$
 x_1 を基底に入れる

 $X_1 = 2 - (\frac{1}{2}) X_4 - X_2 + (\frac{1}{2}) X_3$

 $x_5 = 0 + x_4 + 2x_2 - 5x_3$

 $x_6 = 9 - 2x_4 - 7x_2 + 3x_3$

x₄を基底から出す

辞書の書き換え

(ピボット演算終了)

ピボット演算2回目(その1)

ピポット演算2回目(その1)
$$z = -4 + x_4 + x_2 - 2x_3 z$$
 を減らしたい

$$x_1 = 2$$
 $x_2 = 0$
 $x_3 = 0$
 $x_4 - x_2 + (\frac{1}{2})x_3$
 $x_5 = 0$
 $x_6 = 9$
 $x_4 - 2x_2 - 5x_3$
 $x_6 = 9$

$$x_5 = 0$$
 $+ x_4 + 2x_2 - 5x_3$
 $x_6 = 9$ $- 2x_4 - 7x_2 + 3x_3$

$$(2 + (\frac{1}{2}), 0, 0, 0 - 5) 9 + 3)$$

許容性を満たすためには

ピポット演算に関する用語

- 1回目のピボット演算
 - 基底解 (0,0,0,4,4,1) (2,0,0,0,0,9)

非退化-基底解が変化する

- 2回目のピボット演算
 - 基底解 (2,0,0,0,0,9) (2,0,0,0,0,9)

退化ー基底解が変化しない

ピポット演算2回目(その2)

$$z = -4$$
 + x_4 + x_2 - $2x_3$ $x_3 = 0$ 0 とすると $x_1 = 2 - (½)x_4$ - $x_2 + (½)x_3$ 解は(2,0,0,0,0,9), $z = -4$ とくに、基底変数 $x_5 = 0$

$$z = -4 + (3/5)x_4 + (1/5)x_2 + (2/5)x_5$$

$$x_1 = 2 - (2/5)x_4 - (4/5)x_2 - (1/10)x_5$$

$$x_3 = 0 + (1/5)x_4 + (2/5)x_2 - (1/5)x_5$$

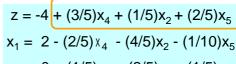
$$x_6 = 9 - (7/5)x_4 - (29/5)x_2 - (3/5)x_5$$

x₂を基底に入れる x₅を基底から出す

辞書の書き換え

(ピボット演算終了

最適性の判定



$$x_3 = 0 + (1/5)x_4 + (2/5)x_2 - (1/5)x_5$$

$$x_6 = 9 - (7/5)x_4 - (29/5)x_2 - (3/5)x_5$$

z の式の非基底変数の係数がすべて非負

任意の許容解において x_4 , x_2 , x_5 は非負なので z - 4

現在の基底解 (2,0,0,0,0,9) は z = -4 なので最適解

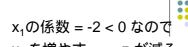
非有界性の判定

現在の辞書

$$z = 0$$
 - $2x_1$ - x_2 - x_3 x_1 を増やす z が減る $x_4 = 4 + 2x_1$ - $2x_2 + x_3$ x_1 を 増やすと $x_5 = 4 + 2x_1$ - $4x_3$ 解は $x_6 = 1 + 4x_1$ - $3x_2 + x_3$ ($0.0.4 + 2...4 + 2...1$

基底解(0,0,0,4,4,1)

目的関数値 z = 0



x₁を 増やすと

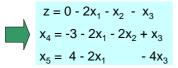
$$x_6 = 1 + 4x_1 - 3x_2 + x_3$$
 ($,0,0,4+2$ $,4+2$ $,1+4$)

目的関数値 z = - 2

を任意に増やしても解は許容 非有界

単体法の問題点

- 反復回数は有限回か? **巡回 -** 同じ辞書が繰り返し現れること
- 初期辞書が許容でない場合はどうする?



単体法の流れ

- 入力:許容辞書(および基底)
- 出力:有界・非有界の判定。有界のときは最適解も。

ステップ1:最適性判定

zの等式の右辺の係数が全て非負 最適解 ある係数が負 基底に入る変数 x。にする

ステップ2: 非有界性判定、ピボット演算

変数 x。をどれだけ増やせるか計算 無限に増やせる 非有界

それ以外 x。を最大限増やしたときに0に減少する 基底変数を基底から出る変数 x, にする

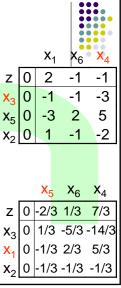
新しい基底に合わせて辞書を書き換え

巡回の例

		X ₁	X ₂	_X ₃
z	0	-1	2	-1
X ₄	0	-2	1	-1
x ₄ x ₅	0	-3	-1	-1
x ₆	0	5	-3	2

		\mathbf{x}_1	x ₆	X_3			
Z	0	7/3	-2/3	1/3	Z	0	
X_4	0	-1/3	-1/3	-1/3	X ₃	0	
X_5	0	-14/3	1/3	-5/3	X ₅	0	
\mathbf{x}_2	0	5/3	-1/3	2/3	X ₂	0	

		X ₅	\mathbf{x}_2	x ₃			X ₅	X_2	X_4
			7/3			0	-1	-1	2
X_4	0	2/3	5/3	-1/3	X ₃	0	2	5	-3
			-1/3			0	-1	-2	1
x ₆	0	-5/3	-14/3	1/3	X ₆	0	-1	-3	-1



最小添字規則

ピボット演算のとき、最小添字規則を適用

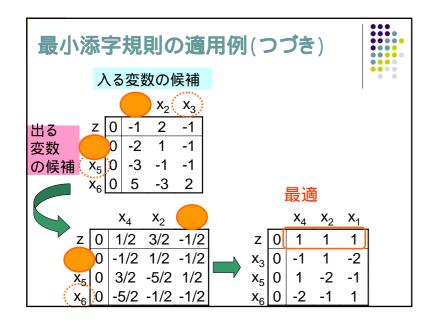
有限反復で終了

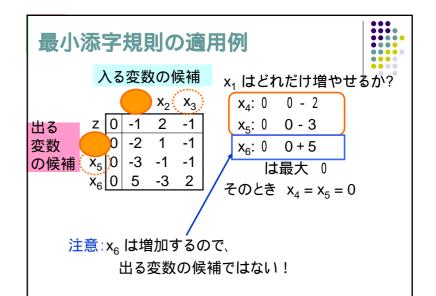
基底に入る 変数の候補

ステップ1にて係数が負の非基底変数が複数存在添字最小のものを選択

基底から出る 変数の候補

■ ステップ2にて値が0に減少する基底変数が複数存在 添字最小のものを選択





今週のレポート問題

- 教科書81ページ問2.11
- 教科書81ページ問2.12
- 教科書82ページ問2.14
- ◆ 次のLP(許容辞書) z = 0-5x₁-4x₂-3x₃

を単体法で解け

$$x_4 = 5 - 2x_1 - 3x_2 - x_3$$

$$x_5 = 11 - 4x_1 - x_2 - 2x_3$$

$$x_6 = 8 - 3x_1 - 4x_2 - 2x_3$$

締め切りは 11月2日(木)

