最小費用テンション問題に 対する算法と 画像処理への応用

Vladimir Kolmogorov (University College London) 塩浦 昭義(東北大学)

最小費用テンション問題

最小化:
$$g(p) = \sum_{u \in V} \varphi_u(p_u) + \sum_{(u,v) \in E} \psi_{uv}(p_v - p_u)$$

条件: $a_u \le p_u \le b_u \ (u \in V)$
 $a_{uv} \le p_v - p_u \le b_{uv} \ ((u,v) \in E)$
 $p \in \mathbb{Z}^V$

G = (V, E):有向グラフ

 $arphi_u, \psi_{uv}: \mathbb{Z} o \mathbb{R}$,凸関数

 a_u, b_u, a_{uv}, b_{uv} : 整数

- □ 凸費用をもつ最小費用フロー問題の双対問題
 - Iri (1969), Rockafellar (1984)

本研究の目的

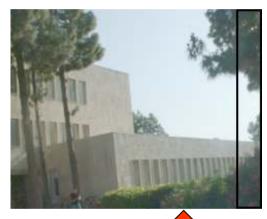
- - 擬多項式時間アルゴリズム

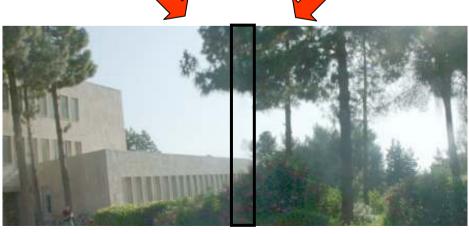
離散凸解析の成果を利用

- □ 主算法の改良→主双対算法の提案
 - 実計算時間の短縮
- □ 提案した算法のパノラマイメージ接合問題への適用

パノラマイメージの接合

入力画像1 入力画像2





Levin et al. (2004) の手法

- □ 基本となるアイディア
 - 隣接するピクセルの明度(輝度)の差分に注目
 - 出力画像での差分値を、入力画像での差分値にできるだけ近づける

\boldsymbol{x}	y

$$|(p_y - p_x) - (I_y^1 - I_x^1)|$$
 $\{|(p_y - p_x) - (I_y^2 - I_x^2)|\}$ 最小化

 p_x : 出力画像のピクセル x での明度

 I_x^k : 入力画像kのピクセルx での明度

x,y: 隣接するピクセル

Levin et al. (2004) の手法

- 基本となるアイディア
 - 隣接するピクセルの明度(輝度)の差分に注目
 - 出力画像での差分値を、入力画像での差分値にできるだけ近づける

最小化:
$$\sum_{(x,y)} w_{xy}^1 |(p_y - p_x) - (I_y^1 - I_x^1)|$$
 + $\sum_{(x,y)} w_{xy}^2 |(p_y - p_x) - (I_y^2 - I_x^2)|$ (x,y)

条件: $0 \le p_x \le 256$

 p_x : 出力画像のピクセル x での明度

 I_x^k : 入力画像kのピクセルx での明度

最小費用 テンション 問題

既存のアルゴリズム

- □ 最小カット問題への帰着 [石川03], [Ahuja et al.04]
 - ullet $arphi_u(\cdot)$ が凸関数でなくても適用可
 - 枝数 (β mK)
- □ 線形費用ネットワークフローへの帰着
 - 枝数 O(β m)
- □ 主算法 [室田00, Bioucas-Dias & Valadão05]
 - 主変数を greedy なやり方で更新
 - 繰り返し最小カット問題を解く
- □ 主双対算法 [Karzanov et al. 97], 双対算法 [Ahuja et al. 03]
 - 双対なネットワークフロー問題を利用
 - 双対変数(フロー)を更新
 - Ahuja et al. のO(n m log (n²/m) log(nK))はこの問題に対し最速

n: 頂点数, m: 枝数

 $K = \max\{b_u - a_u\}$

eta: 関数 $arphi_u$, $arphi_{uv}$ の 折れ線の総数

本研究で得られた結果

- □ 新たな主算法の提案
 - 室田00の主算法の(わずかに)一般化
 - L凸関数最小化にも適用可
- □ 主算法の反復回数に対する理論的解析
 - 反復回数 O(K) (+スケーリングで O(n log K))
 - 室田03による解析結果O(nK)を改善
- □ 主算法から主双対算法への改良
 - 双対変数の利用により(実用的面での)高速化
 - パノラマイメージ接合問題に対し高速な算法

提案する主算法

- □ 手続き UP もしくは DOWN により解 p を繰り返し更新
- □ 手続き UP
 - $p_{\mathsf{u}} \in \arg\min\{g(p') \mid p \leq p' \leq p+1, p'$ は許容解} を計算
 - $g(p_{\mathsf{U}}) < g(p)$ ならば $p := p_{\mathsf{U}}$
- □ 手続き DOWN
 - p_d ∈ arg min $\{g(p') \mid p 1 \le p' \le p, p'$ は許容解 $\}$ を計算
 - ullet $g(p_{\mathsf{d}}) < g(p)$ ならば $p := p_{\mathsf{d}}$
- □ 手続き UP, DOWN により解が不変
 - →終了, 現在の p が最適

提案する主算法

- □ 手続き UP もしくは DOWN の実行方法
 - 人工グラフの最小 s-t カット問題に帰着可能
 - \blacksquare 枝の重み=関数 φu または φuv の勾配
 - O(n m log (n²/m)) 時間で実行できる

反復回数の解析

□ (条件付き)最適解と現在の解の距離を利用

 p^+ : min $\{g(p') \mid p' \geq p, p$ は許容解 $\}$ の極小な最適解

 p^- : min $\{g(p') \mid p' \leq p, p$ は許容解 $\}$ の極大な最適解

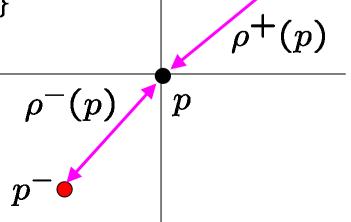
$$\rho^{+}(p) = ||p^{+} - p||_{\infty}, \ \rho^{-}(p) = ||p^{-} - p||_{\infty}$$

$$\rho^{+}(p) = ||p^{+} - p||_{\infty}, \ \rho^{-}(p) = ||p^{-} - p||_{\infty}$$

反復回数の解析

- □ (条件付き)最適解と現在の解の距離を利用
- □ 手続き UP を実行
 - $\rightarrow \rho^+(p)$ は1減少、 $\rho^-(p)$ は非増加
- □ 手続き DOWN を実行
 - $\rightarrow \rho^+(p)$ は非増加, $\rho^-(p)$ は1減少
- $\rho^+(p) = \rho^-(p) = 0 \Longrightarrow p$: 最適解

提案する主算法の反復回数は K以下



実験結果

input pair

minimal optimal configuration

average

maximal optimal configuration

実験結果

input pair

minimal optimal configuration

average

maximal optimal configuration

実験結果

input pair

minimal optimal configuration

average

maximal optimal configuration