アメリカン・アジアンオプションの 価格の近似に対する 計算幾何的アプローチ

渋谷 彰信, 塩浦 昭義, 徳山 豪 (東北大学大学院情報科学研究科)

発表の概要

- *アメリカン・アジアンオプション 金融派生商品の一つ 価格付け(価格の計算)は重要な問題
- ❖ 二項モデルにおける価格付けは計算困難な問題
- ❖ 目的: 近似精度保証をもつ近似アルゴリズムの提案
- ※ アイディア: 区分線形関数を計算幾何手法により近似

オプションとは?

オプション:ある資産(株式、債権、通貨など)を

本発表では コール

将来のある時点(満期)で 所定の価格(行使価格)で売買する権利 のみ扱う (義務ではない)

コール: 買う権利, プット: 売る権利

例:ヤフ一株を年末に50万円で買う権利の

コールオプション

- 先行きの予測に応じた投資
- 価格変動リスクに対する備え(ヘッジング)

オプションの価格付けは実用上重要な計算問題

オプションのペイオフ

例:ヤフ一株を年末に50万円で買う権利のオプション

- 年末に株が60万円に値上がり
 - ⇒オプションを使って株を50万円で買う(行使)
 - ⇒すぐに60万円で売る⇒10万円の儲け(ペイオフ)
- 年末に株が40万円に値下がり
 - ⇒オプションは行使せず ⇒ ペイオフは0万円

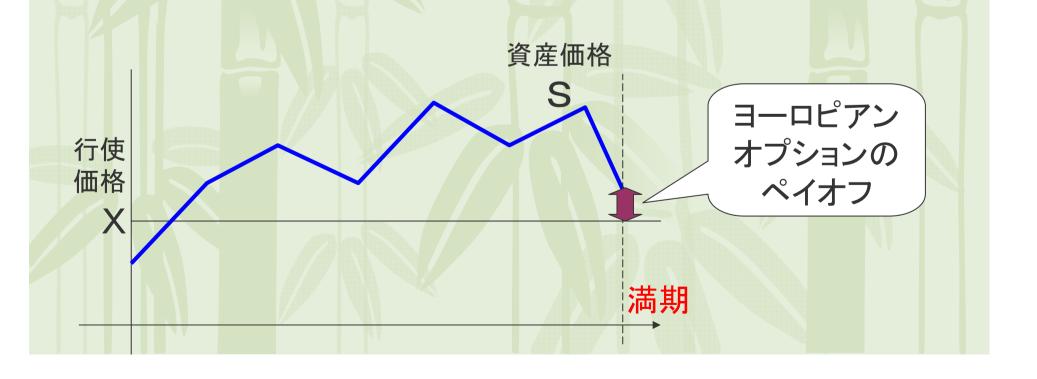
ヨーロピアンオプションのペイオフ

 $(S - X)^{+} = \max\{S - X, 0\}$

(S:満期での株価、X:行使価格)

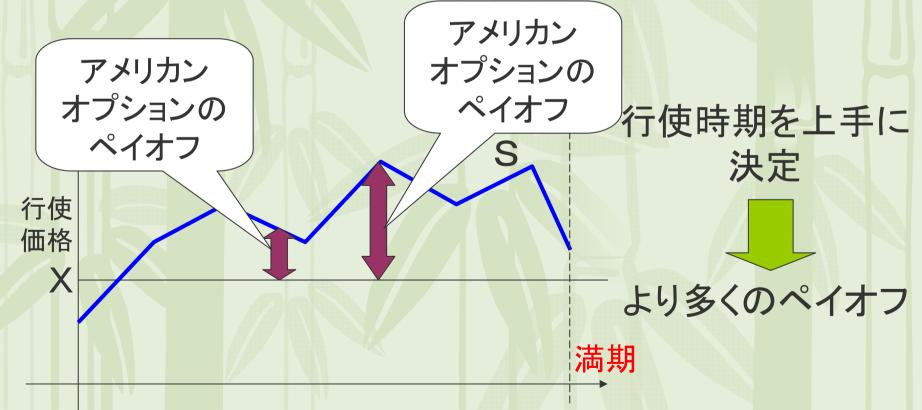
オプションの種類(その1)

- * 行使可能な時期による分類
 - ※ヨーロピアン:満期でのみ行使可能
 - ❖アメリカン:任意の時点で行使可能(早期行使が可能)



オプションの種類(その1)

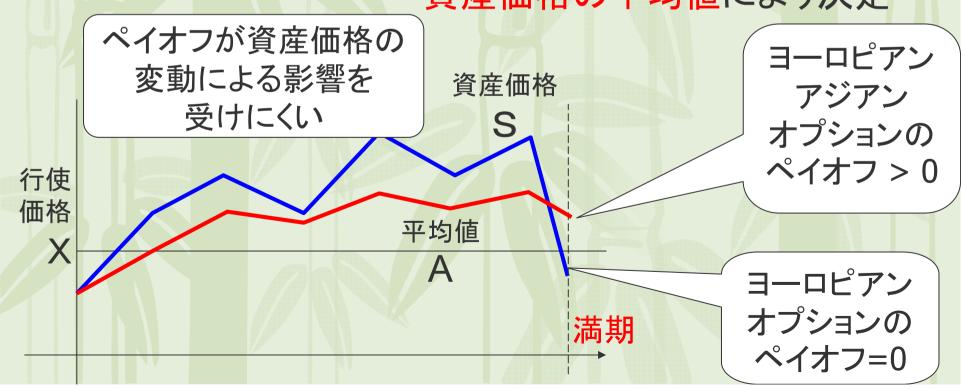
- * 行使可能な時期による分類
 - ※ヨーロピアン:満期でのみ行使可能
 - ❖アメリカン:任意の時点で行使可能(早期行使が可能)



オプションの種類(その2)

- ☆ペイオフの決め方による分類
 - ※普通のオプション: 行使時点での資産価格により決定
 - ※アジアンオプション: 行使時点までの

資産価格の平均値により決定



オプションの種類(その3)

- ❖ 4種類のオプション
 - ❖ヨーロピアンオプション
 - ❖アメリカンオプション
 - ⇒ヨーロピアン・アジアンオプション
 - ※アメリカン・アジアンオプション(本発表で扱う)

- ●任意の時点で行使可能
- ●ペイオフの値は max{0,(過去の資産価格の平均値)ー(行使価格)}

オプションの価格

• オプションの価格

=ペイオフの期待値(から利子を割り引いたもの)

※この価格でないと、無リスクで儲かる方法がある

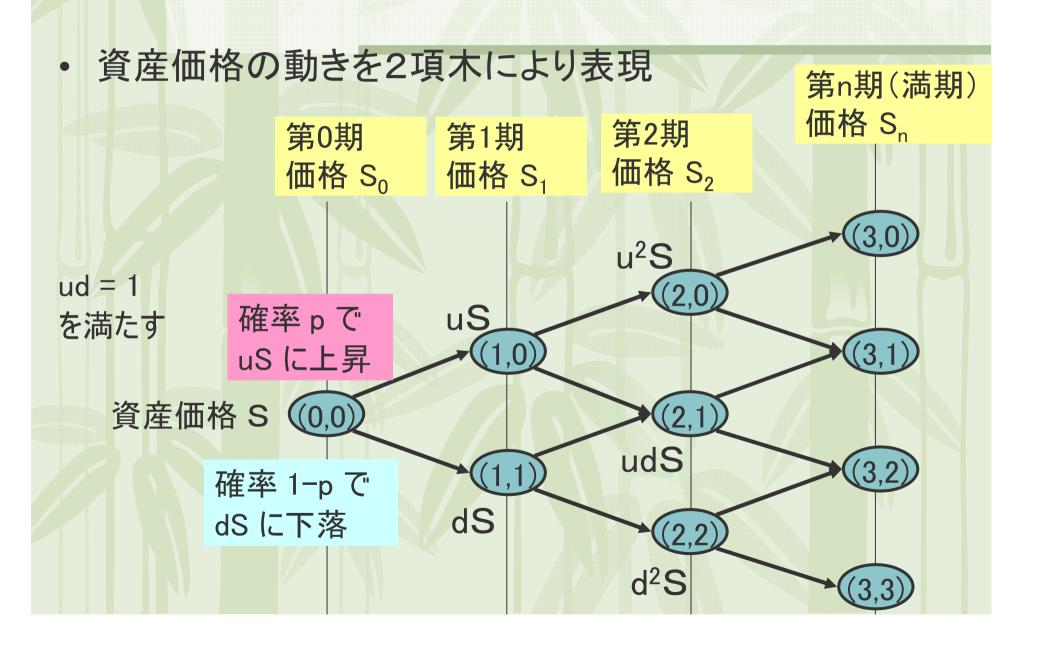
オプションの価格付け=ペイオフの期待値の計算

資産価格の確率モデル

資産価格の動きをどう表現するか?

- ブラック-ショールズモデル (連続モデル)
 - 資産価格の動きを幾何ブラウン運動により表現
 - 確率微分方程式をたて、オプション価格を求める (解析的,数値的)
- 2項モデル (離散モデル) ← 本研究で扱う
 - 資産価格の動きを2項木により表現
 - 動的計画法などによりオプション価格を計算

2項モデル



2項モデル

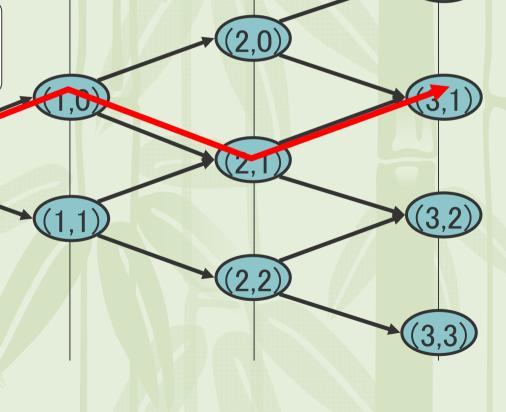
第0期 価格 S₀ 第1期 第2期 価格 S₁ 価格 S₂ 第n期(満期) 価格 S_n

根から葉へのパス
⇔資産価格の変動

(0,0)

第 i 期で行使したときの アメリカン・アジアン オプションのペイオフ

$$\max\left\{0, \frac{\sum_{k=0}^{i} S_i}{i+1} - X\right\}$$



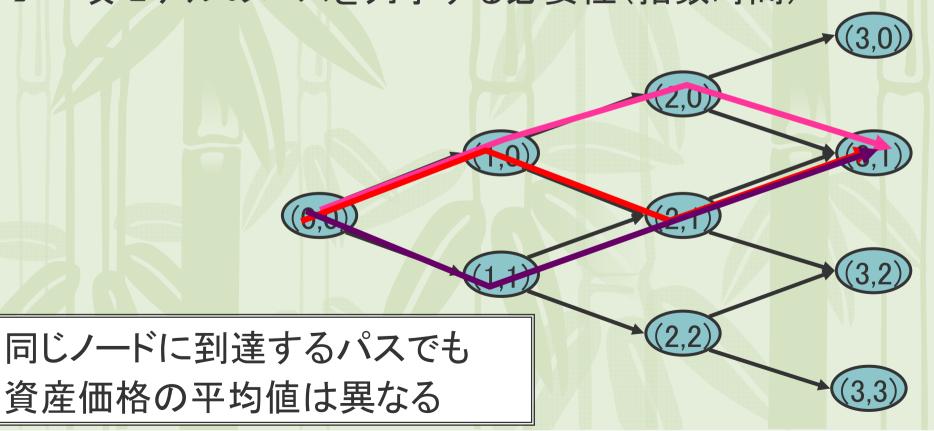
既存の結果, 問題の難しさ

オプションの価格付け

- ❖ ヨーロピアンオプション、アメリカンオプション
 - *O(n²)時間で厳密値の計算が可能
- ⇒ ヨーロピアン・アジアンオプション
 - ❖厳密値の計算には指数時間が必要
 - ❖高精度の近似アルゴリズムが数多く提案されている
- ☆ アメリカン・アジアンオプション
 - ❖厳密値の計算には指数時間が必要
 - ❖近似アルゴリズム: Hull-White(1993), Neave (1997)
 Chalasani et al.(1999), Dai et al.(2002)
 - ❖精度保証付きの近似アルゴリズムは提案されていない

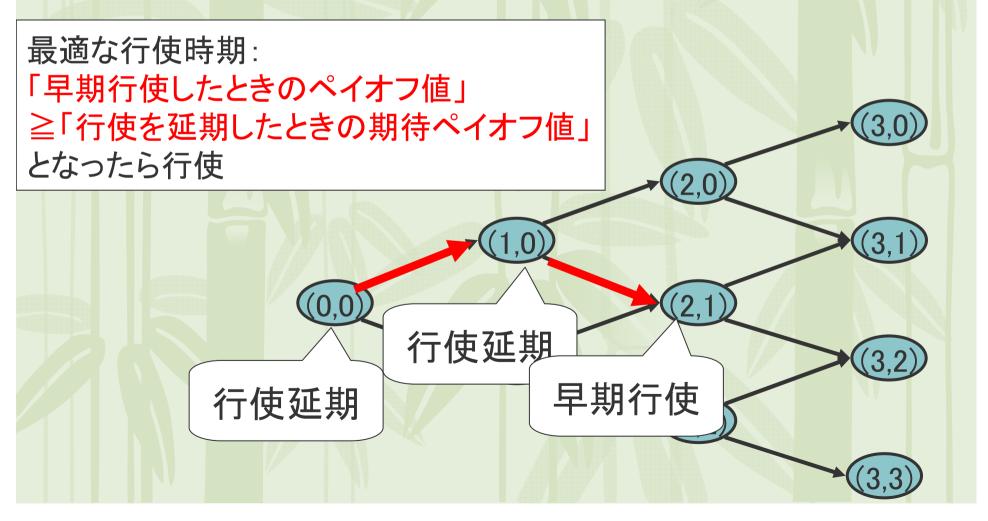
アメリカン・アジアンオプションの難しさ

- ※ アジアン型
- →ペイオフ値が資産価格の履歴に依存
- →二項モデルのパスを列挙する必要性(指数時間)



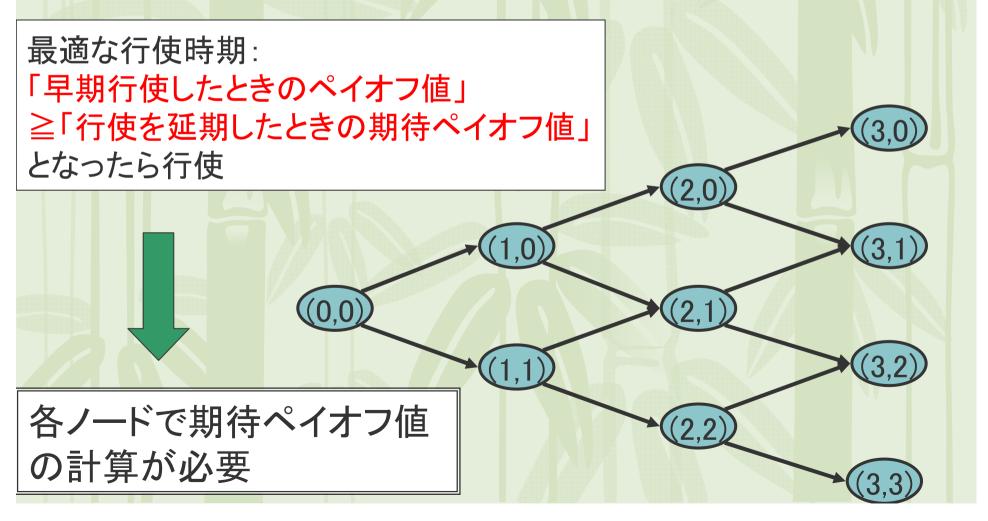
アメリカン・アジアンオプションの難しさ

※ アメリカン型→最適な行使時期の決定が必要



アメリカン・アジアンオプションの難しさ

※ アメリカン型→最適な行使時期の決定が必要



提案するアルゴリズム

提案する近似アルゴリズム

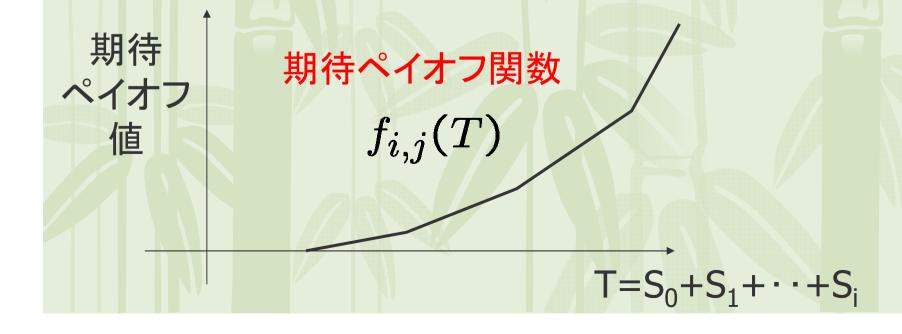
- ❖ 精度保証付きの近似アルゴリズム
- * 誤差 ε の近似値(上界値)を $O(n^4/\varepsilon)$ 時間で求める

アイディア

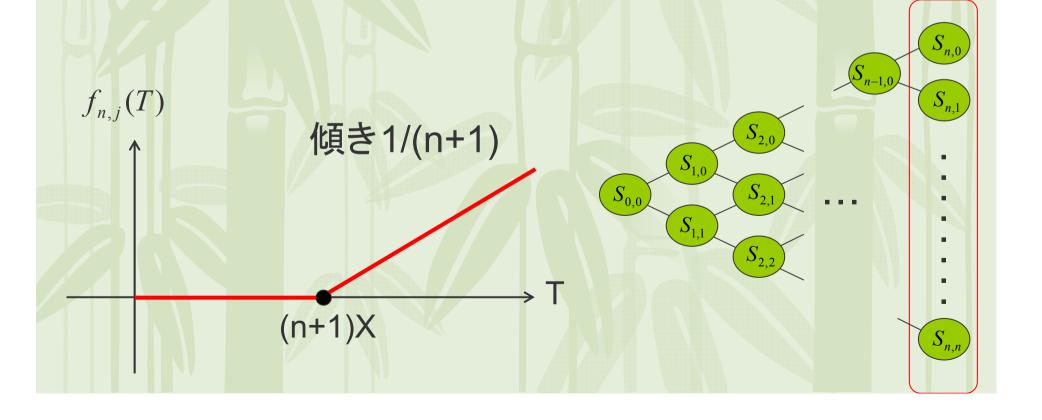
- ❖ 各ノードでの期待ペイオフ値は区分線形関数として表現可能
- ❖区分線形関数は後進的な繰り返し計算により求められる
 - →より単純な区分線形関数により繰り返し近似
 - →厳密値の近似,計算時間の削減

期待ペイオフ値の表現

- ❖ 各ノードの期待ペイオフ値は、過去の資産価格の 合計値に関する区分線形関数により表現可能
- *オプション価格の厳密値はノード(0,0)での 期待ペイオフ関数の値 f_{0,0}(S₀)として得られる

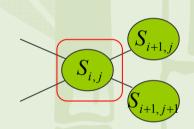


満期のノード: オプションを行使するか否かの選択肢 $f_{n,j}(T) = \max\{0, T/(n+1) - X\}$



満期以外のノード:オプションを早期行使するか 延期するかの選択肢

> 早期行使のときの ペイオフ値

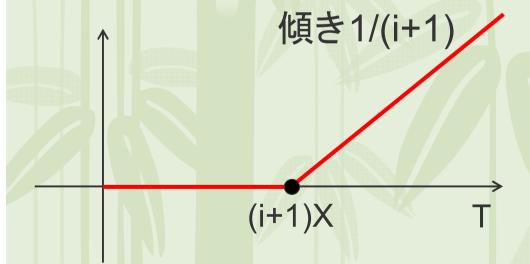


$$f_{i,j}(T) = \max \left[\max\{0, T/(i+1) - X\}, p_{i+1,j}(T + uS_{i,j}) + (1-p)f_{i+1,j+1}(T + dS_{i,j}) \right]$$

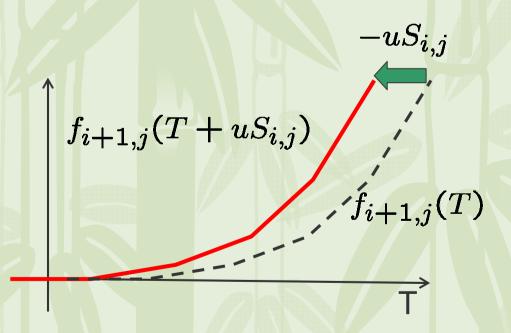
行使を延期したときの 期待ペイオフ値

早期行使のときの ペイオフ値

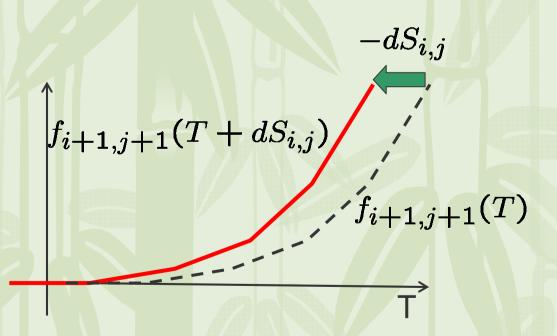
$$f_{i,j}(T) = \max \{\max\{0, T/(i+1) - X\},\ pf_{i+1,j}(T + uS_{i,j}) + (1-p)f_{i+1,j+1}(T + dS_{i,j})\}$$



$$f_{i,j}(T) = \max \left[\max\{0, T/(i+1) - X\}, \\ pf_{i+1,j}(T+uS_{i,j}) + (1-p)f_{i+1,j+1}(T+dS_{i,j}) \right]$$

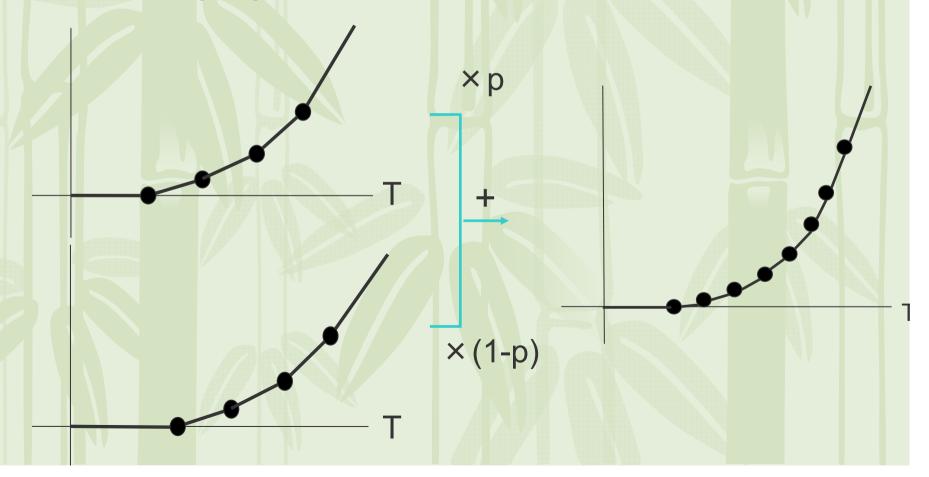


$$f_{i,j}(T) = \max \left[\max\{0, T/(i+1) - X\}, \\ pf_{i+1,j}(T + uS_{i,j}) + (1 - p)f_{i+1,j+1}(T + dS_{i,j}) \right]$$



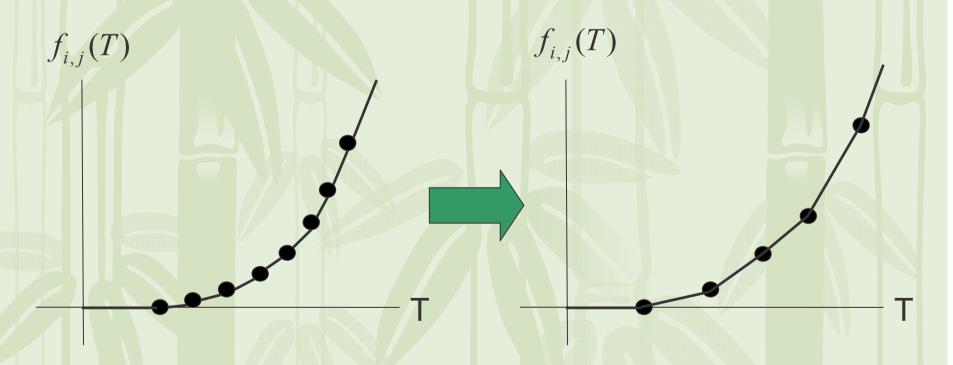
オプション価格の厳密値の計算困難性

- ❖ 区分線形関数の和において、最悪の場合複雑度が2倍に増える
- * この操作を第(n-1)期から第0期まで繰り返す→指数時間



提案する近似アルゴリズム

●各ノードで求めた区分線形関数を, 計算幾何手法 を用いて近似する



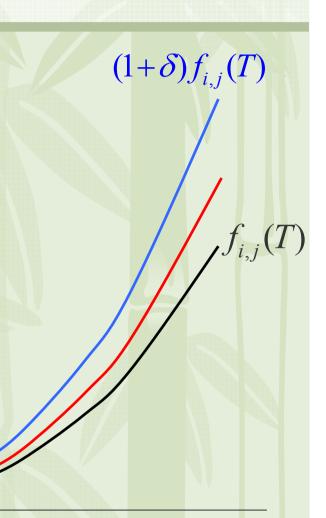
近似のアイディア

求めた区分線形関数 $f_{i,j}(T)$ と $(1+\delta)f_{i,j}(T)$ に挟まれる 区分線形関数を求める

1回の操作で近似比 1+ δ

第(n-1)期から第0期まで繰り返すと近似比 $(1+\delta)^n < 1+\varepsilon$

$$\delta = \varepsilon / 2n$$



近似方法その1

$$(1+\delta)a_{i-1} < a_i \ (i = 1, 2, ..., k)$$

 $\implies (1+\delta)^k a_0 \le a_k$

$$a_0 \geq \frac{\min\{p,1-p\}^n}{n+1}$$
, $a_k \leq 1$

$$\implies k = O\left(\frac{n}{\delta}\right) = O\left(\frac{n^2}{\varepsilon}\right)$$

$$(1+\delta)a_2$$

$$(1+\delta)a_1$$

計算時間
$$O\left(\frac{n^4}{\varepsilon}\right)$$

$$(1+\delta)a_0$$

 $(1+\delta)a_0$

$$(1+\delta)a_1$$

 $(1+\delta)a_2$

近似方法その2

同様の解析により

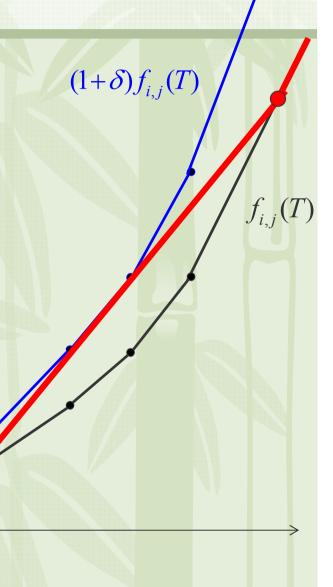
$$k = O\left(\frac{n}{\delta}\right) = O\left(\frac{n^2}{\varepsilon}\right)$$

計算時間
$$O\left(\frac{n^4}{\varepsilon}\right)$$

 $(1+\delta)a_0$

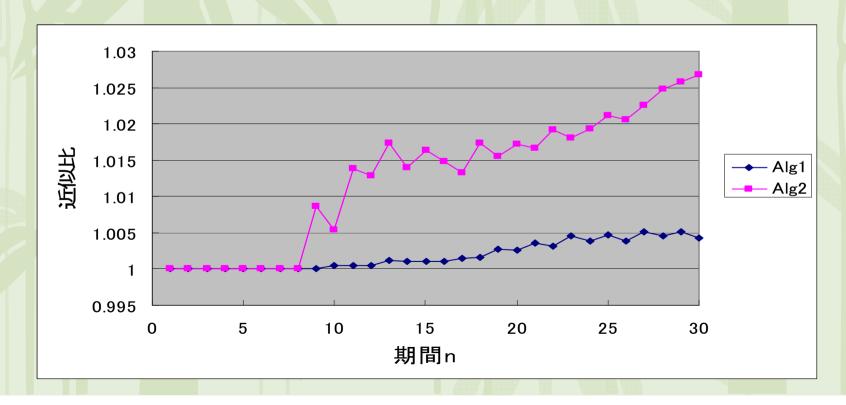
 $(1+\delta)a_0$

 $(1+\delta)a_1$

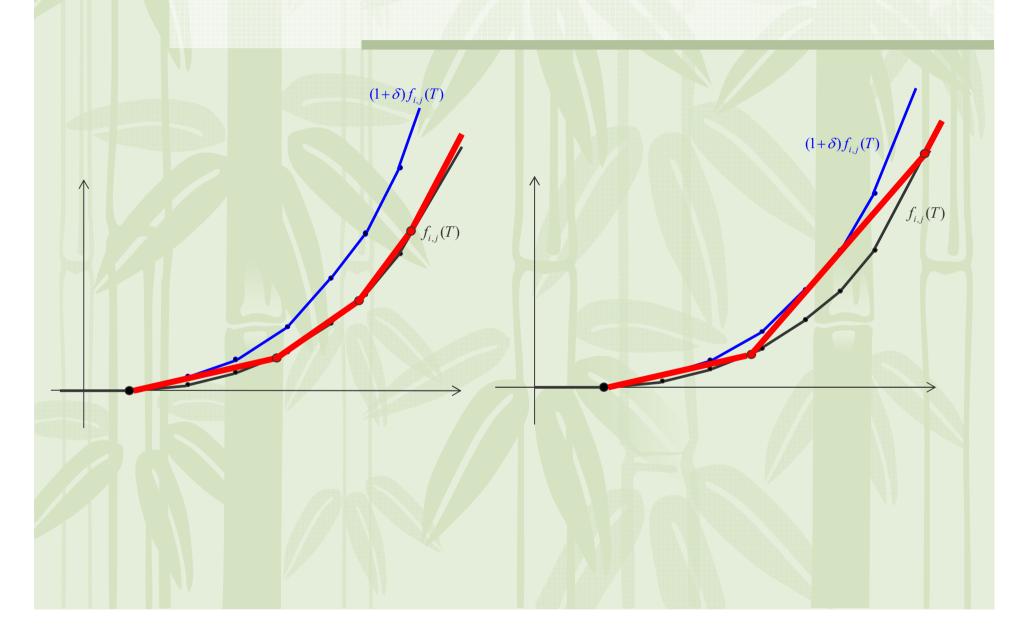


実験結果(近似比)

- * $\varepsilon = 0.2$ として実験, 厳密値との比を計算
- ※理論値1.2より大幅に良い近似比
- ❖ 近似方法その1の精度はその2より精度がよい

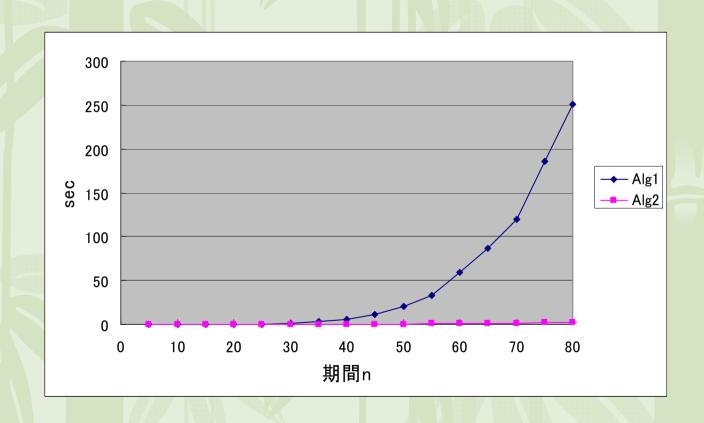


2つの近似方法



実験結果(計算時間)

❖ 近似方法その2はその1に比べて非常に早い



まとめと今後の課題

まとめ

- ❖ アメリカン・アジアンオプションの価格付けに対する 精度保証付きの近似アルゴリズム
- * 誤差 ε の近似値(上界値)を $O(n^4/\varepsilon)$ 時間で求める

今後の課題

- ❖より良い誤差バウンドの証明
- ❖より高速な近似アルゴリズムの構築