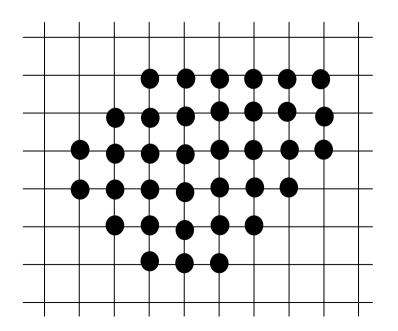
Polynomial-Time Algorithms for Convex Optimization on Jump Systems

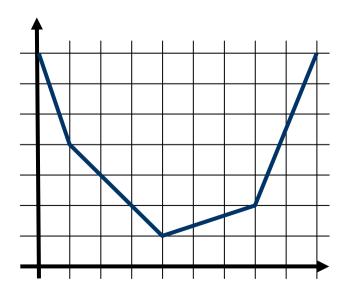
Akiyoshi Shioura Tohoku University, Japan (joint work with Ken'ichiro Tanaka)

Discrete Convex Optimization

Minimize f(x) subject to $x \in S$

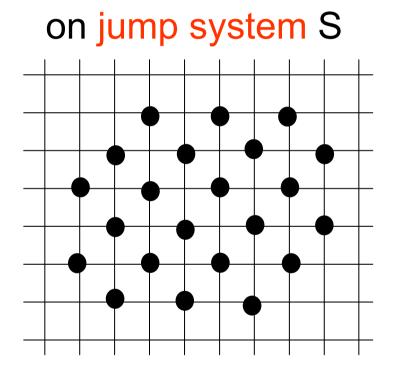
- $S \subseteq \mathbb{Z}^n$, discrete convex set
- $f: \mathbb{Z}^n \to \mathbb{R} \cup \{+\infty\}$, discrete convex function





Optimization on Jump Systems

Our problem: Minimization of discrete conv. fn. f(x)



(1) f: separable convex function
$$f(x) = \sum_{i=1}^{n} f_i(x_i)$$

(2) f: M-convex function (Murota2006)

Our Results: first polynomial-time algorithms

Previous Algorithms

n: dimension, L: "size" of feasible region $(L = \max\{||x - y||_1 | x, y \in \text{feas. region}\})$

- pseudo-polynomial time algorithm (polynomial in n & L)
 - Ando-Fujishige-Naitoh (1995)

for separable-convex functions on jump systems

Murota-Tanaka (2006)

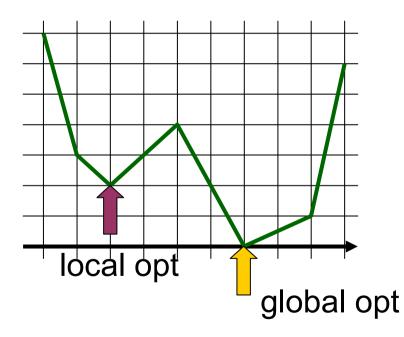
for M-convex functions on jump systems

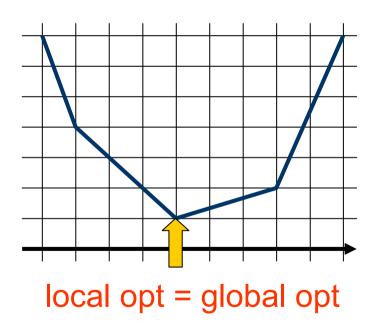
no polynomial time algorithm (polynomial in n & log L)

was known

- key properties
 - local optimality →global optimality
 - minimizer cut property

Key Properties

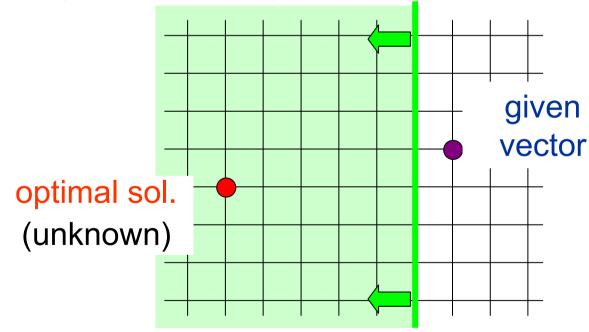




Key Properties

minimizer cut property

--- separation of optimal solution from given vector



Outline of This Talk

- Jump systems
- Key properties & greedy algorithm
- Polynomial time algorithm

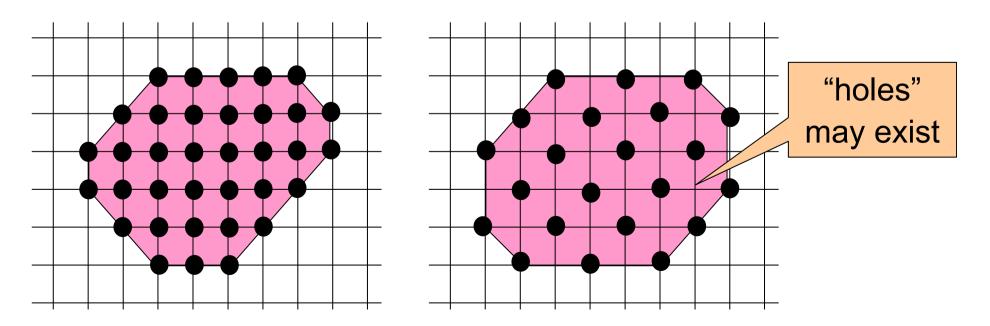
Outline of This Talk

Jump systems

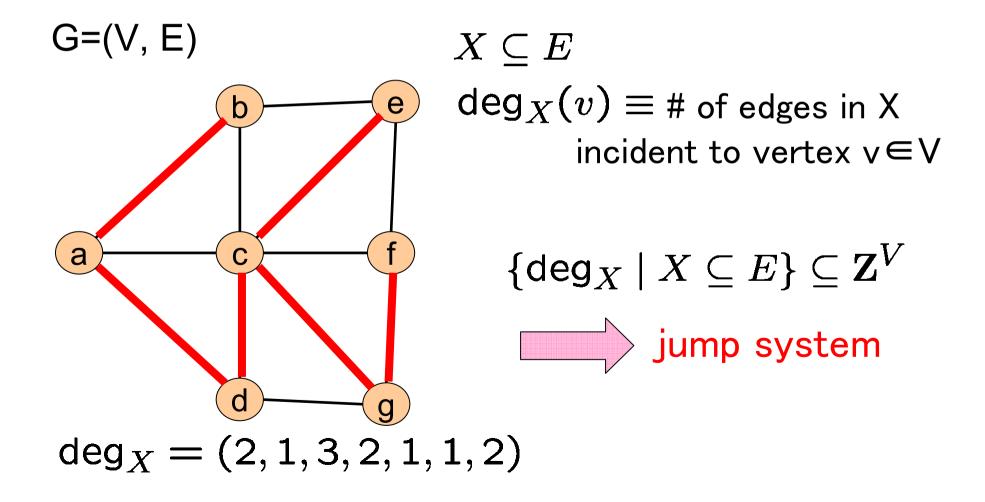
- an example: degree sequences of graphs
 definition
- Key properties & greedy algorithm
- Polynomial time algorithm

Jump System

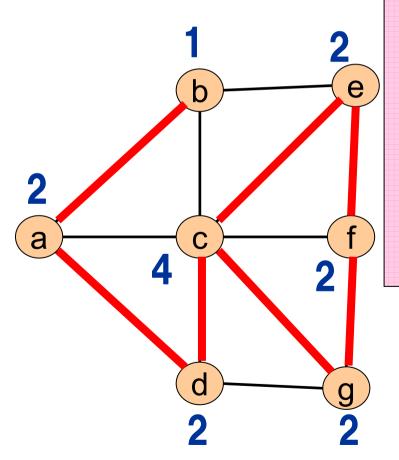
- introduced by Bouchet-Cunningham (1995)
- set of integer vectors with nice combi. prop.
- common generalization of matroid, delta-matroid, and base polyhedron
- Inear optimization can be solved by greedy algorithm



Example: Degree Sequences of Graphs



Example: Degree Sequences of Graphs



■ feasibility problem on degree sequences
Given: graph G=(V, E), vector b∈Z^V
Find: edge set X⊆E satisfying
degree requirement deg_X = b

What if there is no feasible solution?

→ optimization

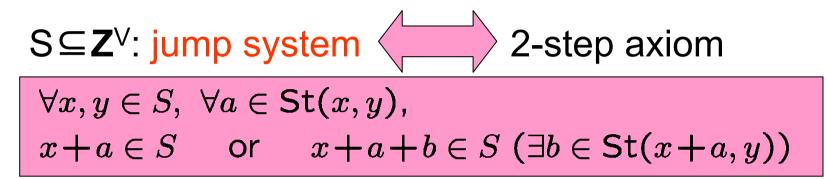
Example: Degree Sequences of Graphs



■ optimization problem on degree sequences Given: graph G=(V, E), vector b ∈ Z^V Find: edge set X ⊆ E minimizing $||deg_X - b||_2 = \sum_{v \in V} \{deg_X(v) - b(v)\}^2$

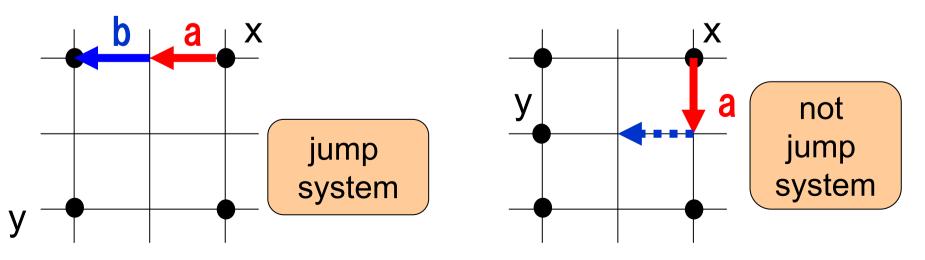
> minimization of separable-convex fn on jump system

Definition of Jump System



St(x, y): set of (x, y)-steps

$$a \in \mathsf{St}(x,y) \iff \left\{ egin{array}{ll} a \colon \mathsf{unit} \ \mathsf{vector} \ ("\,\mathsf{step"}\,), \ ||(x+a)-y||_1 = ||x-y||-1 \end{array}
ight.$$



Outline of This Talk

Jump systems

- Key properties & greedy algorithm
 local optimality → global optimality
 minimizer cut property
 greedy algorithm
- Polynomial time algorithm

Local Opt -> Global Opt

n Minimize $\sum f_i(x_i)$ subject to $x \in S$ i=1jump system $N(x) = \{y \in \mathbf{Z}^{V} \mid ||y - x||_{1} \le 2\}$ 2-step neighborhood **Theorem** (Murota 2006) $x \in S$, minimizer in N(x)Χ (local optimal) $\Rightarrow x$: optimal size $O(n^2)$ (global optimal)

Greedy Algorithm

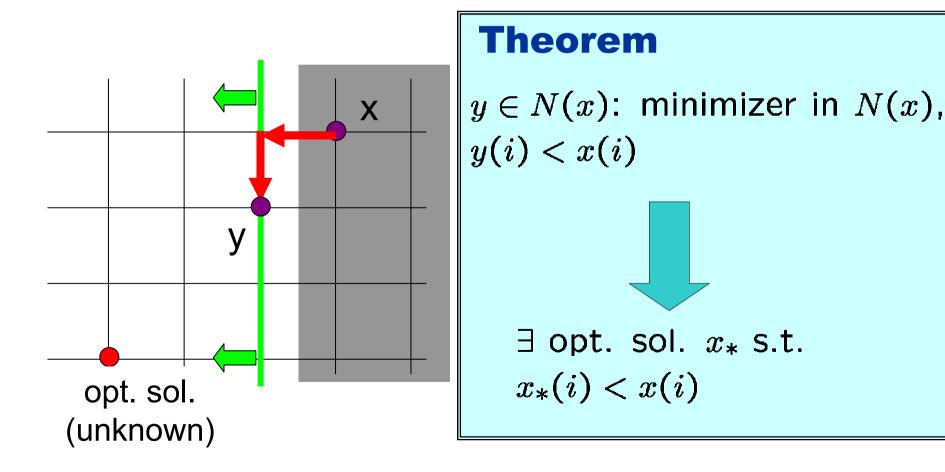
• x: local opt in $N(x) \rightarrow$ global opt

S0: $x := x_0$ S1: Find a minimizer y in N(x)S2: if $y = x \implies x$: optimal S3: y := x, go to S1

- f(x) decreases strictly \rightarrow finite iterations
- exponential time

Minimizer Cut Property

separation of optimal solution from given vector



Improved Analysis of Greedy Algorithm

S0: $x := x_0$ S1: Find a minimizer y in N(x)S2: if $y = x \implies x$: optimal S3: y := x, go to S1

■ distance ||x_{*} - x|| decreases strictly

$$||x_* - (x + s + t)||_1 \le ||x_* - x||_1 - 1$$

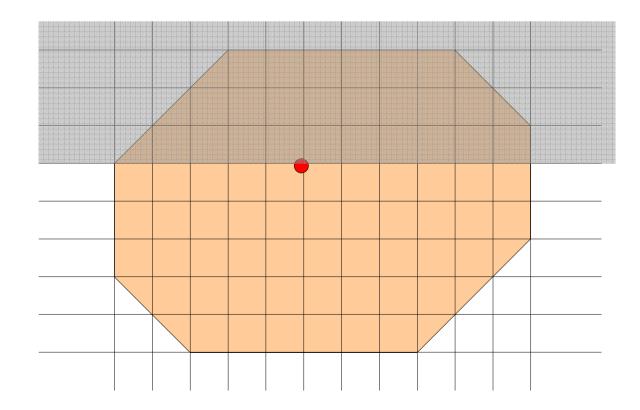
• O(nL) iterations $(L = \max_{x,y \in S} ||x - y||_1)$ pseudo-polynomial time

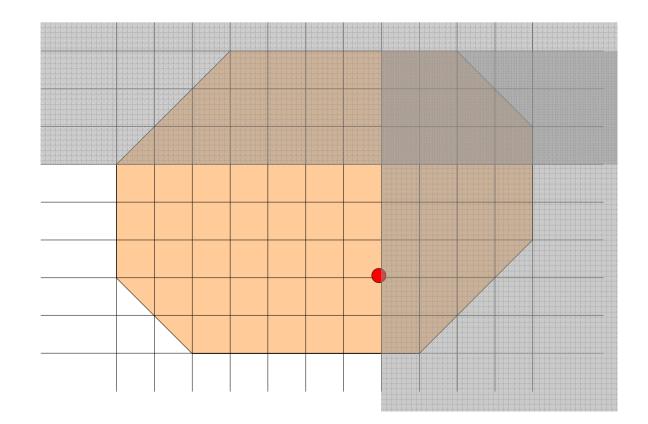
Outline of This Talk

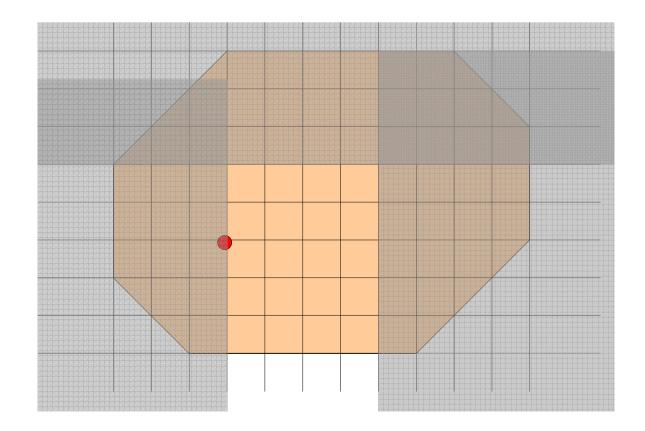
- Jump systems
- Key properties & greedy algorithm
- Polynomial time algorithm
 Domain reduction algorithm

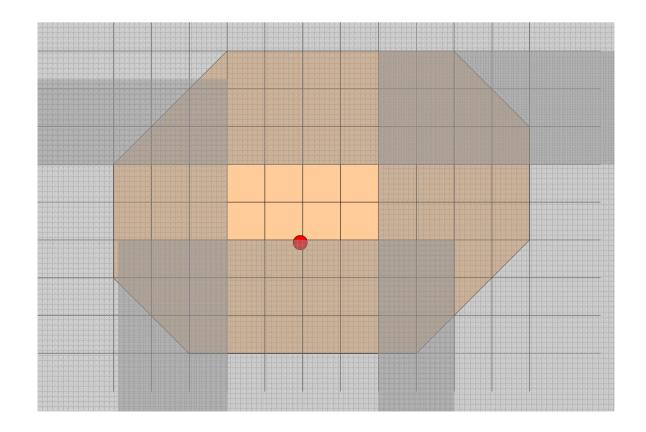
Minimizer Cut Property and Polynomial-time Algorithm

- Use of Minimizer Cut Property (MCP)
 - --- detect the area containing an optimal solution
- apply MCP to appropriately chosen vectors
 - ➔ polynomial-time algorithm
 - Domain reduction algorithm
 - (Shioura(1998) for M-convex function on base polyhedron)





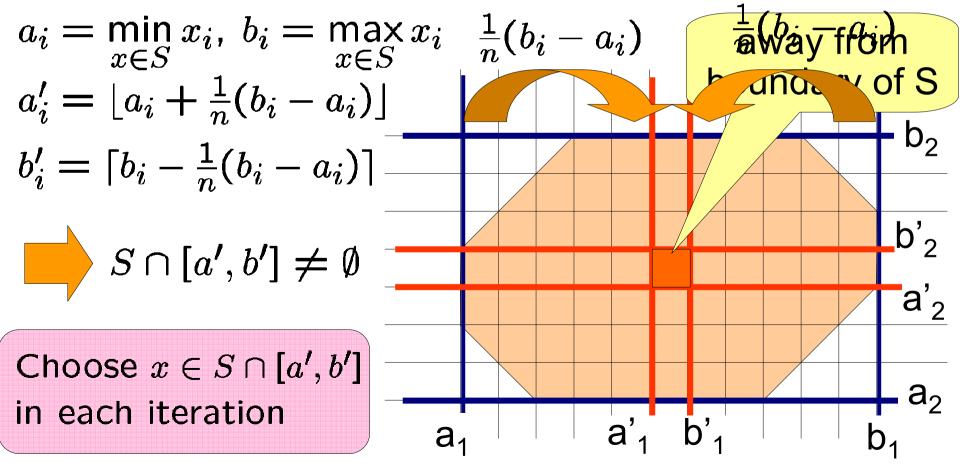


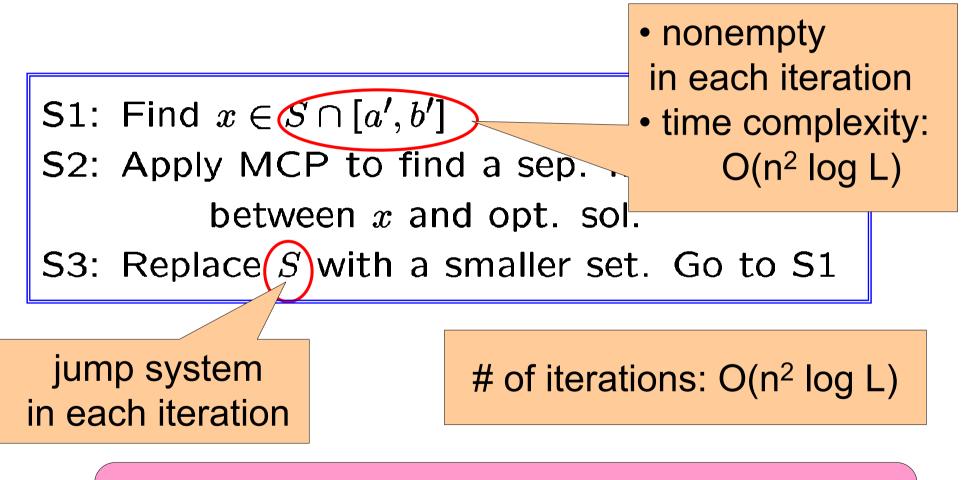


Which Vector to Choose?

Theorem:

S: jump system

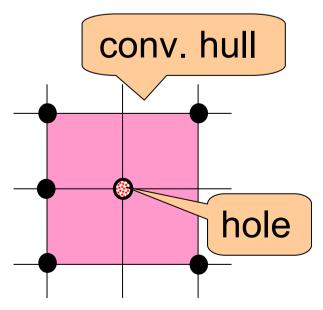




time complexity: $O(n^4(\log L)^2)$ $L = \max\{||x - y||_1 \mid x, y \in \text{dom } f\}$

Validity of Domain Reduction Algorithm

- originally proposed for M-convex fn. on base polyhedron
- →extended to sep.-conv. fn. on jump system
- difficulty: jump system may contain "holes"
- require new techniques for proofs



Thank you!

Greedy Algorithm for Linear Optimization

linear optimization can be solved by greedy algorithm

Min.
$$w^T x$$
 s.t. $x \in S \subseteq \mathbf{Z}^V$

1. Assume $|w_1| \ge |w_2| \ge \cdots \ge |w_k| > 0 = |w_{k+1}| = \cdots = |w_n|$ Put S₀ := S

2. Perform the following for each i = 1, 2,

• $w_i > 0 \rightarrow x_i^* := \max(x_i \mid x \in S_{i-1})$

•
$$w_i < 0 \rightarrow x_i^* := \min(x_i \mid x \in S_{i-1})$$

• $S_i := \{x \in S_{i-1} \mid x_i = x_i^*\}$

Definition of M-convex Function on Jump System

If: S→R is M-convex⇔

 $\begin{aligned} \forall x, y \in S, \ \forall s \in \mathsf{St}(x, y), \ \exists t \in \mathsf{St}(x + s, y) \\ \text{s.t.} \ x + s + t \in S, \ y - s - t \in S, \\ \text{and} \ f(x) + f(y) \geq f(x + s + t) + f(y - s - t) \end{aligned}$

