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SummarySummary of This Talkof This Talk

option：typical financial derivative

pricing European-Asian option on binomial model

--- difficult to compute accurately

⇒ approximation 

Aingworth, Motwani & Oldham (SODA00) 

time: O(kn2),     absolute error O(nX/k)

Our Algorithm: 

time: O(kn2),     absolute error O(X/k)

n, X: problem parameters, k: time-error tradeoff param. 



OptionOption

option: right to sell (or buy) 
some financial asset (e.g., stock)
at some point in the future (expiration date)
for a specified price (strike price) 

gain more benefit by investment
hedge risk from the fluctuation of stock price



Payoff of OptionPayoff of Option

stock price goes up to $220 at the year-end
⇒exercise option to buy the stock at $200
⇒sell it for $220 ⇒ gain $20（payoff)

stock price goes down to $170
⇒do not exercise option ⇒ payoff = $0

Example: option to buy a stock of Google Inc. 
at the year-end at $200

Payoff of European Option:

(S ‒ X)+ ＝max{S ‒ X, 0}

（Ｓ：stock price at expiration date,   Ｘ：strike price）



EuropeanEuropean--Asian OptionAsian Option
payoff of European-Asian option
depends on average of stock price A
during whole period

payoff: (A ‒ X)+ ＝max{A ‒ X, 0}

strike 
price Ｘ

time

S: stock price

A: average of 
stock price

(S-X)+ = 0

(A-X)+ > 0

safe against fluctuation of stock price



Computation of Option PriceComputation of Option Price
price of option = discounted expected value of payoff 
--- need to model the movement of stock price 

Our model: binomial model (discrete model)
proposed by Cox, Ross & Rubinstein (1979)
represent stock price movement                      
by a binomial tree
can compute exact option price by ＤＰ



Binomial ModelBinomial Model

a path P=(S0, S1, S2, ..., Sn) from the root to 
a leaf represents the movement of stock price

payoff of European-Asian option = 
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Our ProblemOur Problem
compute the expected payoff 
of European-Asian option 
on the binomial model ⎟
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payoff is dependent on the path P=(S0, S1, S2, ..., Sn)
（path-dependent option）

payoff is nonlinear w.r.t. the running total ∑iSi
⇒ need enumeration of all the paths
⇒ exponential time



Approximation Algorithms Approximation Algorithms 
for Pricing Europeanfor Pricing European--Asian OptionAsian Option
Monte Carlo Method
based on path sampling
error bound depends on the volatility of stock price

Other methods
based on heuristics
no theoretical error bound



AMO Algorithm and its VariantsAMO Algorithm and its Variants
Dai, Huang & Lyuu 
(2002)
abs. err.:

adjust # of buckets
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Our Result

Shioura & Tokuyama 
(2004)
abs. err.: 

use both ideas

Aingworth, Motwani 
& Oldham (2000)
time: O(kn2)

abs. err.: O(nX/k)
DP + bucketing  
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Ohta, Sadakane, 
Shioura & Tokuyama
(2002)
abs. err.:

randomization

（n：depth of binomial tree, X: strike price, k: positive integer）
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independent 
of volatility

n disappears!



Exact Algorithm by DPExact Algorithm by DP
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AMO Algorithm (1)AMO Algorithm (1)
# of running subtotals can be exponential
⇒ approximate running subtotals by bucketing

interval running subtotal
& probability

400
300 (310, 0.05)

(205, 0.15)
(240, 0.12)
(285, 0.20)
(170, 0.10)
(150, 0.10)
(110, 0.10)
(80, 0.05)
(30, 0.01)

300

200
200

100
100

0

round up 
running subtotals

&
sum up 
probabilities
in each bucket

400
300 (400, 0.05)

300
200 (300, 0.47)

(200, 0.30)

(100, 0.06)

200
100
100

0



AMO Algorithm (2)AMO Algorithm (2)
k: # of buckets at each node
⇒ error bound ≦ max. value of running subtotal/k

Proposition:
running subtotal            is ≧ (n+1)X

at the t-th period

option will be exercised at the expiration date
conditional expectation of the payoff 

can be computed easily
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⇒ error bound of AMO algorithm = (n+1) X/k



Algorithm Algorithm byby Dai et al. (2002)Dai et al. (2002)
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AMO algorithm： use the same number k

of buckets at each node
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set the number of buckets kij
at the node (i, j) flexibly
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adjust # of buckets kij
to minimize error bound 
under the condition ∑kij = kn
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Algorithm Algorithm byby Ohta et Ohta et al. (2002)al. (2002)
AMO algorithm：approximate running subtotals

in a bucket by rounding-up

interval running subtotal & 
probability
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(150, 0.60) 

(110, 0.60) prob. 1/3

prop. 1/2

prob. 1/6

choose a running subtotal randomly
as approximate value

(200, 0.60) 



Analysis of Ohta et al. (2002)Analysis of Ohta et al. (2002)

regard the behavior of randomized algorithm

as stochastic process ⇒ Martingale

expectation of the error by random choice

of running totals at a node = 0

⇒ apply Azuma’s inequality (1967)
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analysis is difficult



Our AlgorithmOur Algorithm

set the number of buckets kij
at node (i, j) flexibly

random choice of running subtotal
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analysis is quite easy!



Open ProblemsOpen Problems
derandomization of our algorithm with the same 
error bound
approximation of American-Asian option
analysis of error bound compared to exact price


	Efficiently Pricing European-Asian Options: Ultimate Implementation and Analysis of the AMO AlgorithmAkiyoshi Shioura(Tohok
	Summary of This Talk
	Option
	Payoff of Option
	European-Asian Option
	Computation of Option Price
	Binomial Model
	Our Problem
	Approximation Algorithms for Pricing European-Asian Option
	AMO Algorithm and its Variants
	Exact Algorithm by DP
	AMO Algorithm (1)
	AMO Algorithm (2)
	Algorithm by Dai et al. (2002)
	Algorithm by Ohta et al. (2002)
	Analysis of Ohta et al. (2002)
	Our Algorithm
	Open Problems

