Efficiently Pricing European-Asian Options: Ultimate Implementation and Analysis of the AMO Algorithm

Akiyoshi Shioura (Tohoku University)

joint work with T. Tokuyama

Summary of This Talk

- option: typical financial derivative
- pricing European-Asian option on binomial model
 - --- difficult to compute accurately

approximation

- Aingworth, Motwani & Oldham (SODA00) time: O(kn²), absolute error O(nX/k)
- Our Algorithm: time: O(kn²), absolute error O(X/k)

n, X: problem parameters, k: time-error tradeoff param.

Option

 option: right to sell (or buy) some financial asset (e.g., stock) at some point in the future (expiration date) for a specified price (strike price)

- gain more benefit by investment
- hedge risk from the fluctuation of stock price

Payoff of Option

Example: option to buy a stock of Google Inc. at the year-end at \$200

stock price goes up to \$220 at the year-end exercise option to buy the stock at \$200 sell it for \$220 gain \$20(payoff)
stock price goes down to \$170 do not exercise option payoff = \$0

Payoff of European Option:

 $(S X)^{+} = max\{S X, 0\}$

S: stock price at expiration date, X: strike price)

European-Asian Option

 payoff of European-Asian option depends on average of stock price A during whole period

payoff: $(A X)^+ = max{A}$ X, 0S: stock price $(S-X)^{+} = 0$ strike price X A: average of $(A - X)^{+} > 0$ stock price time safe against fluctuation of stock price

Computation of Option Price

- price of option = discounted expected value of payoff
 - --- need to model the movement of stock price
- Our model: binomial model (discrete model)
 - proposed by Cox, Ross & Rubinstein (1979)
 - represent stock price movement by a binomial tree
 - can compute exact option price by D P

Our Problem

compute the expected payoff of European-Asian option on the binomial model

• payoff is dependent on the path $P=(S_0, S_1, S_2, ..., S_n)$ (path-dependent option)

 payoff is nonlinear w.r.t. the running total _iS_i need enumeration of all the paths exponential time

Approximation Algorithms for Pricing European-Asian Option

Monte Carlo Method

based on path sampling

error bound depends on the volatility of stock price

Other methods
based on heuristics
no theoretical error bound

AMO Algorithm and its Variants

(n:depth of binomial tree, X: strike price, k: positive integer)

AMO Algorithm (1)

 # of running subtotals can be exponential approximate running subtotals by bucketing

interval	running subtotal & probability	round up]
400	(310, 0.05)	running subtotals & sum up probabilities in each bucket	400 300	(400, 0.05)
300 300	(205, 0.15) (240, 0.12)		300 200	(300, 0.47)
200 200	(240, 0.12) (285, 0.20) (170, 0.10)		200 100	(200, 0.30)
100	(150, 0.10) (110, 0.10)		100 0	(100, 0.06)
100 0	(80, 0.05) (30, 0.01)			<u> </u>

AMO Algorithm (2)

k: # of buckets at each node error bound max. value of running subtotal/k

Proposition:

running subtotal $\sum_{i=0}^{t} S_i$ is

(n+1)X at the t-th period

option will be exercised at the expiration date
conditional expectation of the payoff
can be computed easily

error bound of AMO algorithm = (n+1) X/k

Algorithm by Ohta et al. (2002)

AMO algorithm: approximate running subtotals in a bucket by rounding-up

choose a running subtotal randomly as approximate value

, (200, 0.60) (170, 0.60)

interval	running subtotal & probability	prop. 1/2
200	(170, 0.30)	(150, 0.60)
	(150, 0.10)	prob. 1/6
100	(110, 0.20)	
		prob. 1/3 (110, 0.60)

Analysis of Ohta et al. (2002)

 regard the behavior of randomized algorithm as stochastic process Martingale expectation of the error by random choice of running totals at a node = 0 apply Azuma s inequality (1967)

Our Algorithm

• adjust # of buckets k_{ij} to minimize error bound under the condition $k_{ij} = kn^2$ error bound $O\left(\frac{x}{k}\right)$ analysis is quite easy!

Open Problems

- derandomization of our algorithm with the same error bound
- approximation of American-Asian option
- analysis of error bound compared to exact price