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Abstract

The tree center problems are to find a subtree minimizing the maximum distance from
any vertex. This paper shows that these problems in a tree network are related to the bot-
tleneck knapsack problems, and presents linear-time algorithms for the tree center problems
by using the relation.

1 The Tree Center Problems

Let T = (V,E) be a tree network with a vertex set V = {vi,---,v,} and an edge set
E ={ea,---,en}, where an edge e; is incident to the vertex v; and on the path connecting
v; and v1. We denote by N the index set {2,---,n} of edges. For each i € N, the edge
e; has a positive length [; and a positive weight w;. In this paper, we assume that 7'
is drawn in the Euclidean plane so that each edge e; is a line segment with length [;, and
regard T as a closed and connected subset of points in the Euclidean plane. For two points
p,q on an edge e;, a partial edge connecting p and q is the set of points lying between p
and g on e;. The length of the partial edge is defined by the Euclidean distance I,, of p
and ¢, and the weight is w;(lpe/1;).

A subset S of T is called a subtree if it is closed and connected. A subtree S is
decomposed into several partial edges such that the intersection of any pair of distinct partial
edges is empty or a vertex. We call a subtree discrete when its boundary points are vertices
of T.

In a tree network 7T, the distance between two points p,q € T, denoted by d(p,q), is the
sum of the lengths of partial edges on the unique path connecting p and ¢. The distance
between a point p and a subtree S is given by d(p,S) = min{d(p,q) | ¢ € S}. For each
subtree S, the eccentricity ecc(S) is the maximum distance from S to any vertex in T,
ie., ecc(S) = max{d(v;,S) | v; € V}. The size of a subtree S is defined as the sum of the
weights of partial edges in S and denoted by size(S).
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This paper deals with two types of the tree center problems, which find a subtree in T

minimizing the eccentricity under the size constraint. The continuous version is described as

Minimize  ecc(S5)
CTCP | subject to size(S) < W,
S is a subtree of T,

and the discrete version is

Minimize  ecc(S)
DTCP | subject to size(S) < W,
S is a discrete subtree of 7T,

where 0 < W < size(T'). We call optimal solutions of these problems the continuous tree
center and discrete tree center, respectively. These tree center problems and their variations
were discussed by many researchers. When W = 0, the tree center problems find the so-
called absolute center and vertex center, for both of which O(n)-time algorithms were already
presented [4, 5]. For the case w; =1; (i € N), Minieka [7] and Hakimi, Schmeichel and Labbé
[3] presented simple greedy algorithms for the continuous and discrete tree center problems,
respectively, both of which run in O(n?) time by naive implementation.

Our main aim is to investigate the relationship between the tree center problems and the
bottleneck knapsack problems. We shall formulate the tree center problems as linear and
integer programming problems. These formulations give the relation that the tree center
problems are the bottleneck knapsack problems with the “subtree” constraint. We show that
the additional subtree constraint is satisfied by optimal solutions of the bottleneck knapsack
problems. The linear-time solvability of the bottleneck knapsack problems enables us to find
optimal subtrees in O(n) time.

A closely related work was done by Tamir [8] for the tree median problem, which finds a
subtree minimizing the sum of the distances from all vertices. He derived the relationships
with the knapsack problems, and presented exact and approximation algorithms for the tree
median problems.

For convenience of the description, assume that T is a rooted tree with root vi. For any
two vertices wv;,vj;, if the path connecting v; and v; contains v;, then v; is an ancestor of
vj, and v; is a descendant of v;. The parent of v;, denoted by f(v;), is the unique ancestor
of v; connected by an edge e;. For any i € N and a real number r with 0 <r <1, (r,q)

represents the point on e; with the Euclidean distance [;r from f(v;).

2 Main Results

We first show that the continuous tree center problem (CTCP) is reducible to the continuous
bottleneck knapsack problem.
Simple observation gives the following property.

Lemma 2.1 [7] The continuous tree center contains the absolute center.



Therefore, it is sufficient to consider continuous subtrees containing the absolute center. We
assume without loss of generality that the absolute center of T' is a vertex in 7. (Otherwise,
we augment the absolute center to V. ) We also assume that v; is the absolute center. Any
subtree containing v; can be represented by using a vector (y;)ieny with 0 <y; <1, where
each y; is associated with the edge e;. If there exists a partial edge of e; connecting f(v;)

and (r,%), then we set y; =r, otherwise y; = 0. Such a vector satisfies the condition:
if y; >0 then y; =1 (j € N,v; :f(vj)). (1)
On the other hand, if (y;);cny satisfies the condition (1), then the point set

U {n)]0<r <y} u{u}

1€EN, y; >0

induces a subtree containing wv;.

For each i € N, we define b; as
b; = max{d(v;,v;) | v; is a descendant of v;}.

It satisfies the recursive equation:

b — max{l; +b; | j € N, f(vj) =v;} (Fops.t. f(uvn) =),
’ 0 (otherwise).

The eccentricity is rewritten as follows.

Lemma 2.2 Suppose that S is a subtree containing vi with S # T and that (y;)ien IS
a vector associated with S. Then, it holds that

ecc(S) = max{l;(1 —y;) +b; | i € N,y; < 1}.
From the above discussion, we can restate the CTCP as

Minimize max{l;(1 —y;)+b;|7€ N,y; <1}

subject to Y {w;y; |1 € N} <W,
if y; > 0 then y; =1 (4 € N,v; = f(vy)),
0<y, <1 (i € N),

CTCP1

which is equivalent to

Minimize — max{l;xz; + b; | i € N,z; > 0}

. Y S W .
COTCP2 subject to :{wzmz |ie N} > W, | (2.3)
if £; <1 then z; =0 (4 € N,v; = f(vy)), (2.4)
0<az; <1 (i € N). (2.5)

Here z; =1—y; foreach i € N and W' =Y {w; | i € N} —W. Elimination of the condition
(2.4) from the CTCP2 yields a continuous bottleneck knapsack problem, referred to as the
CTCP3. (Note that the CTCP3 can be seen as a variant of the continuous minimax resource

allocation problem in [6].)



Lemma 2.3 The optimal solution of the CTCP3 satisfies the condition (2.4).

Proof. For a given scalar parameter %, define

.’L‘Z(t) = (t—bi)/li (b, §t<li+bi),
0 (bi > t).

Let ¢* = min{t | > w;zi(t) > W'}. Then, the optimal solution of the CTCP3 is given by
(zi(t*))ien. When wv; = f(v;), we have b; > b; +1;, and consequently z;(t*) = 0 if
z;(t*) < 1. Therefore, (z;(t*))icn satisfies (2.4). | |

With a slight modification, the algorithm proposed in [2] searches the parameter t* of the

above proof in linear time.

Theorem 2.4 The continuous tree center problem is reducible to the continuous bottleneck

knapsack problem in O(n) time, and solvable in O(n) time.

Next, we shall show that the discrete tree center problem (DTCP) can be reduced to the
0-1 bottleneck knapsack problem.

We assume that the root v; is a vertex center. The following property is implicitly used
in Hakimi, Schmeichel and Labbé [3].

Lemma 2.5 There exists a discrete tree center containing a vertex center.

Thus, we have only to consider discrete subtrees containing wv;. The following is a corollary

of Lemma 2.2.

Corollary 2.6 Let S be any discrete subtree containing vi. If S # T then
ecc(S) =max{l; +b; |i € N, ¢, CT\ S}
By using a 0-1 valued vector (y;)icn, we can reformulate the DTCP to

Minimize max{(l; +b;)(1 —v;)|i€ N}

subject to Y {wiy; |1 € N} < W,
ify; >0 theny; =1 (4 € N,v; = f(vj)),
y; € {0,1} (1 € N).

DTCP1

Putting W/ =Y {w; |1 € N} —W and z; =1—1y; for each i € N, we obtain

Minimize  max{(l; + b;)z; | i € N}

: o ,
DTCP2 subject to Y {w;z; |i € N} > W/, (2.6)
ifz; <1thenz; =0 (j € N,v; = f(vg)), (2.7)
z; € {0,1} (i € N). (2.8)



By removing the condition (2.7) from the DTCP2, we obtain a 0-1 bottleneck knapsack prob-

lem. For such a problem, the 0-1 valued vector (z);cn given by

o= 1 (L +b; <l +by),
! 0 (I +b; >+ bg)

is optimal, where k € N satisfies
Z{wi |iEN, li—FbZ’ <lk—|-bk} <W’SZ{’U)Z' |iEN, li—Fbi Slk+bk}-

Since l; +b; > I +b; for any 4,j € N with v; = f(v;), the condition (2.7) holds for
(})ien. We can find the index k£ in O(n) time by the median finding algorithm [1].

Theorem 2.7 The discrete tree center problem is reducible to the 0-1 bottleneck knapsack

problem in O(n) time, and solvable in O(n) time.
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