Submission to Mathematics of Operations Research

On Hochbaum’s Proximity-Scaling Algorithm

for the General Resource Allocation Problem

Satoko MORIGUCHI and Akiyoshi SHIOURA

January, 2002; revised November, 2002, June 2003

Keywords: resource allocation, discrete optimization, combinatorial optimization, con-

cave function.

Abstract

It is pointed out that the polynomial-time scaling algorithm by Hochbaum (1994) does not work
correctly for the general resource allocation problem. Hochbaum’s algorithm increases a variable by
one unit if the variable cannot be feasibly increased by the scaling unit. We modify the algorithm
to increase such a variable by the largest possible amount and show that with this modification the
algorithm works correctly. The effect is to modify the factor F' in the running time of Hochbaum’s
algorithm for finding whether a certain solution is feasible by the factor F of finding the maximum
feasible increment (also called the saturation capacity). Therefore, the corrected algorithm runs in
O(n(logn + F)log(B/n)) time.

Satoko MORIGUCHI: Graduate School of Information Science and Engineering, Tokyo
Institute of Technology, Tokyo, 152-8552, Japan, Satoko.Moriguchi@is.titech.ac. jp.

Akiyoshi SHIOURA: Graduate School of Information Sciences, Tohoku University, Sendai,
980-8579, Japan, shioura@dais.is.tohoku.ac. jp.

1 Introduction

The general resource allocation problem, also called the resource allocation problem under submodular
constraints (see Ibaraki and Katoh (1988) and Katoh and Ibaraki (1998)), is formulated as follows:

(GAP) | Maximize f(x) =327 fj(z;)
subject to >, x; = B,
>jeatj <r(4) (ACN),

x>, x=eZ,

where N = {1,2,...,n}, fj : Z — R is a concave function for j = 1,2,...,n, B€ Z4, r: 2N — Z is
a submodular set function, and I € Z". In Hochbaum (1994), a “proximity theorem” is presented for
the general resource allocation problem by using a procedure called greedy(s). Based on this result,
Hochbaum proposed a polynomial-time scaling algorithm called GA P, which was supposed to be the
fastest so far for the general resource allocation problem. We, however, noticed incorrectness of the
procedure greedy(s) and the algorithm GAP; we found some examples for which the algorithm GAP
does not find an optimal solution.

The main aim of this paper is to modify Hochbaum'’s scaling algorithm so that it works correctly.
Based on this observation, we modify the procedure greedy(s) so that the statement of the proximity
theorem holds true. We also show that with a slight modification the algorithm GA P works correctly

by using the corrected version of greedy(s).

2 Hochbaum’s Algorithm and Counterexamples

In each scaling phase, Hochbaum'’s algorithm for (GAP) uses the following procedure. A vector x € Z"
is said to be feasible if it satisfies Y37 7; < B, > .cp2j <7(A) (A C N), and & > 1. We denote by
e’ € {0,1}" the j-th unit vector, and by e the vector (1,1,...,1). For each j € N and z; € Z, we
define Aj(zj) = fi(zj +1) = fi(z;)-

Procedure greedy(s)
Step 0: x =1, B=B —1l-e, E={1,2,...,n}.
Step 1: Find ¢ such that A;(z;) = maxjep{A;(z;)}.
Step 2: (Feasibility check), is « + e’ infeasible?
If yes, F — FE —{i}, and §; = s.
Else, is « + s - €’ infeasible?
(x) If yes, E «— E —{i}, x; — xz;+1, B— B —1, and 9, = 1.
Else, z; «— x; + s, and B «— B — s.
Step 3: If B =0, or & = (), stop, output . Otherwise go to Step 1. O

In this procedure 9; denotes the last increment in z; for j = 1,2,...,n. Using the output x®) of

Procedure greedy(s), the following “proximity theorem” was stated:

Statement A (Theorem 4.1 of Hochbaum (1994)). If there is a feasible solution to (GAP) then
there exists an optimal solution x* such that * > ®) —§ > () —s. e (where the inequalities are
component-wise).

Based on this, Hochbaum (1994) proposed the following scaling algorithm for (GAP), and claimed
that it runs in O(n(logn+ F') log(B/n)) time (more precisely, O(n(log n+ F') max{log(B/n),1}) time),

where F' is the time complexity for the feasibility check of a vector.

Algorithm GAP

Step 0: Put s = [B/2n].

Step 1: If s = 1, call Procedure greedy(1). The output is *. Stop. «* is an optimal solution.

Step 2: Call greedy(s). Let ®) be the output. Set I = x(®) — se. Set s «— [s/2]. Go to Step 1. O

Statement B (Theorem 5.1 (a) of Hochbaum (1994)). Algorithm GAP finds an optimal solution
of (GAP).

Example 2.1. Consider a simple resource allocation problem with upper bounds:
Maximize S ' Hn — i)z,
subject to >, x; = 8n, (2.1)
0<x; <7(t=12,...,n—1), z, >0, ¢ € Z",

where n is a multiple of 4 with n > 8. Put s =4 and | = 0, and apply greedy(s) to the problem (2.1).
Then, the vector « and the set &£ change as follows.

Initially, we have = (0,0,...,0,0) and E = {1,2,...,n}. The first iteration increments z; by 4
since Ai(z1) =n—1>n—j = Aj(z;) for j € E. Then, the second iteration increments = by one
and removes x; from the set E since x + el is feasible but + 4 - e! is infeasible. Hence, we have
x = (5,0,...,0,0) and F ={2,3,...,n}.

Similarly in the (2k — 1)-st and 2k-th iterations with 2 < k < n —1, the variable xj is incremented
from 0 to 5, and removed from F. Hence, we have 1 = --- = a2 = 5, 241 = -+ = 2, = 0, and
E={k+1,k+2,...,n} at the end of 2k-th iteration.

At the beginning of (2n — 1)-st iteration, we have © = (5,5,...,5,0), £ = {n} and B = 3n + 5.
Therefore, the variable z,, is incremented by 4 repeatedly until the (11n/4 — 1)-st iteration. Finally in
the (11n/4)-th iteration, z, is incremented by one since @ + e™ is feasible but « + 4 - e" is infeasible.
Then, the variable x,, is removed from the set F, B is decreased to zero, and the procedure terminates
with the output ® = (5,5,...,5,3n+5) and 6 = (1,1,...,1,1).

However, there is no optimal solution &* € Z" of the problem (2.1) satisfying the inequality in
Statement A:

>z —4.e= (1,1,...,1,3n 4+ 1).

The unique optimal solution of (2.1) is & = (7,7,...,7,n + 7). Thus, Statement A fails. O

Example 2.2. We show by an example that the output of Algorithm GAP may be an infeasible

solution. Let us apply the algorithm to the following simple resource allocation problem:

Maximize x;
subject to Yz, =2n+1, £ >0, © € Z",

where n is an integer with n > 2. Initially we have s = [(2n +1)/2n] = 2 and I = 0. In the first
iteration, we call greedy(2) and obtain a vector £ = (2n +1,0,0,...,0). Then, set I = z®) —2.e =
(2n —1,-2,-2,...,-2) and s = [2/2] = 1. In the second iteration, we call greedy(1) and obtain a
vector &* = (4n —1,—2,—2,...,—2), which is infeasible. O

3 Correction to Hochbaum’s Algorithm

In this section, we first discuss the reason for the failure of the above algorithm. Based on this
observation, we modify Procedure greedy(s) so that Statements A and B hold true.

The following fact is useful for finding an optimal solution of (GAP).

Theorem 3.1 (Corollary 1 of Girlich et al. (1996)). Let € Z" be any feasible vector, and put
E(x)={j|x+e: feasible}. If i € {1,2,...,n} satisfies

i€ E), Ai(x;)=max{A;(z;) | j € E(x)}, (3.1)
then there exists an optimal solution x* of (GAP) satisfying x} > x;.

Theorem 3.1 shows that it is necessary to choose a variable z; satisfying the condition (3.1) and
to increment it in each iteration to guarantee the existence of an optimal solution «* satisfying the
inequality * > & — . On the other hand, the variable x; chosen in Step 2 of Procedure greedy(s) does
not necessarily satisfy the condition (3.1) since z; is chosen from the set E, which is a subset of E(x).
Each variable x; is removed from the set £ even if @ + el is still feasible, once the vector + s - €’

becomes infeasible. This is the main reason why Hochbaum’s algorithm fails for certain examples.

Example 2.1 (continued). In each iteration, we have E(x) = {1,2,...,n} and Aq(z1) =n—1>
n —j = Aj(z;) for any j. The variable z;, however, is never incremented after the third iteration,
and the procedure increments other variables which do not satisfy the condition (3.1). In particular,
the variable x, is incremented by one in the last iteration, but we cannot assure the existence of an

optimal solution &* with z} > 3n + 4 since x,, does not satisfy (3.1). O

Based on this observation, we replace the line (%) in Step 2 of greedy(s) with the following:
If yes, E — FE —{i}, o/ =¢(x,i), z; — z;+ ', B— B—<d/, and §; = &/,

where the saturation capacity ¢(x,i) is defined by ¢(x,i) = max{3 € Z, | = + (e’ : feasible}, which is
also given as follows (see Fujishige (1991)):

&(x, 1) = min [B — é% min {T(A) —)

JEA

ieAc{1,2,...,n}H. (3.2)

We denote by greedy’(s) the modified version of greedy(s). From Theorem 3.1 follows that in each
iteration of greedy’(s) there exists an optimal solution x* satisfying * > & — §. This shows that
Statement A holds true for greedy’(s).

Theorem 3.2. Let %) be the output of greedy’(s). If there is a feasible solution to (GAP) then there

exists an optimal solution x* such that ©* > x®) —§ > x(®) — 5. e.

Even if greedy(s) is replaced by greedy’(s), Algorithm GAP may output an infeasible solution;
indeed, the behavior of Algorithm GAP for Example 2.2 does not change, and GAP outputs an
infeasible solution. This is because the lower bound /; may decrease when it is updated in Step 2
of GAP and therefore the vector x in greedy’(s) (and in greedy(s)) can be an infeasible solution, as
shown in Example 2.2. To obtain an optimal solution of (GAP) correctly, we modify Algorithm GAP
by replacing the update of I in Step 2 with the following;:

Put [; := max{wgs) —-s+ 1L} (j=12,...,n).

Algorithm GAP with this replacement is denoted by GAP’. The correctness of GAP' follows immedi-
ately from Theorem 3.2. The running time of GAP’ can be analyzed in the same way as in Hochbaum

(1994). We denote by F the time complexity required for computing the saturation capacity c(x,1).

Theorem 3.3. Algorithm GAP' finds an optimal solution of (GAP) in O(n(logn + F)log(B/n))
(more precisely, O(n(logn + F) max{log(B/n),1})).

Finally, we compare the time complexity of GAP’ with that of Hochbaum’s algorithm GAP; in
particular, we compare F with F. Saturation capacity computation corresponds to finding the most
violated constraint in the sense of (3.2), whereas feasibility check needs to find a violated constraint.
Hence, we have F' < F for the general resource allocation problem, and it is still an open question
whether F = F or not. For special cases such as the nested and the tree constrained problems
dealt with in Hochbaum (1994), on the other hand, we have F = ﬁ, i.e., the time complexity of our
corrected algorithm is the same as the one by Hochbaum (1994) for such special cases. It is left for

future research to discuss whether our corrected algorithm runs as fast as Hochbaum’s.

Acknowledgement

The authors thank Kazuo Murota, Akihisa Tamura, and anonymous referees for their valuable com-
ments. This work is supported by Grant-in-Aid of the Ministry of Education, Culture, Sports, Science
and Technology of Japan.

References

Fujishige, S. 1991. Submodular Functions and Optimization, North-Holland, Amsterdam.

Girlich, E., M. Kovalev, A. Zaporozhets. 1996. A polynomial algorithm for resource allocation

problems with polymatroid constraints. Optimization 37 73 86.

Hochbaum, D. S. 1994. Lower and upper bounds for the allocation problem and other nonlinear
optimization problems. Math. Oper. Res. 19 390-409.

Ibaraki, T., N. Katoh. 1988. Resource Allocation Problems: Algorithmic Approaches, MIT Press,
Boston, MA.

Katoh, N., T. Ibaraki. 1998. Resource allocation problems. D. -Z. Du and P. M. Pardalos, eds.,
Handbook of Combinatorial Optimization II, Kluwer Academic Publishers, Boston, MA, 159-260.

