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The concepts of M-convex and L-convex functions were proposed by Murota
in 1996 as two mutually conjugate classes of discrete functions over integer
lattice points. M/L-convex functions are deeply connected with the well-
solvability in nonlinear combinatorial optimization with integer variables. In
this paper, we extend the concept of M-convexity and L-convexity to polyhe-
dral convex functions, aiming at clarifying the well-behaved structure in well-
solved nonlinear combinatorial optimization problems in real variables. The
extended M /L-convexity often appear in nonlinear combinatorial optimization
problems with piecewise-linear convex cost. We investigate the structure of
polyhedral M-convex and L-convex functions from the dual viewpoint of anal-
ysis and combinatorics, and provide some properties and characterizations.
It is also shown that polyhedral M/L-convex functions have nice conjugacy
relationship.
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In the area of combinatorial optimization, there exist many “well-solved”
problems, i.e., the problems which have nice combinatorial structure and
which can be solved efficiently (see [5, 23, 39]). Many researchers have been
trying to identify the well-behaved structure in combinatorial optimization
problems.

The concept of matroid, introduced by Whitney [47], plays an important
role in the field of combinatorial optimization (see [46, 48, 49, 50]). Ma-
troidal structure is closely related to the well-solvability of combinatorial
optimization problems such as those on graphs and matroids, and can be
found in fairly large number of efficiently solvable problems. Matroidal
structure yields the tractability of problems in the following way:

e Global optimality is equivalent to local optimality, which implies the
success of the so-called greedy algorithm for the problem of optimizing a
linear function over a single matroid.

e A nice duality theorem, Edmonds’ intersection theorem [9], guarantees
the existence of a certificate for the optimality in the matroid intersection
problem in terms of dual variables.

In 1970, Edmonds introduced the concept of polymatroid by extending
that of matroid to sets of real vectors ([9], see also [46]). A polymatroid
P C RK is a polyhedron given as

P={zeRY| D z(w) <pX) (VX CV)}
weV

by a submodular set function p : 2V — R with certain additional con-
ditions, where R denotes the set of nonnegative reals, and p is called
submodular if

p(X)+p(Y) > p(XNY)+p(XUY) (VX,Y CV).

Polymatroids share nice combinatorial properties of matroids: for exam-
ple, the greedy algorithm for matroids still works for polymatroids, and a
duality holds for the polymatroid intersection problem. Fujishige, empha-
sizing the essential role of submodularity of p, generalized the concept of
polymatroid to that of submodular system [16, 17].

In recent years, nonlinear combinatorial optimization problems are in-
vestigated more often due to theoretical interest and necessity in practical
application. The nonlinear resource allocation problem (see [19, 22]) and
the convex cost submodular flow problem (see [17, 21]) are examples of non-
linear combinatorial optimization problems. Both of the problems have nice
combinatorial structures, which lead to efficient combinatorial algorithms.
These results, however, do not completely fit in the framework of matroid,
polymatroid, and submodular system.
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The concepts of M-convex and L-convex functions, introduced by Murota
[29, 30, 32], afford a nice framework for well-solved nonlinear combinato-
rial optimization problems. M-convex function is a natural extension of
the concept of valuated matroid introduced by Dress—Wenzel [7, 8] (see
also [26, 27, 28, 36]) as well as a quantitative generalization of the set of
integral points in an integral base polyhedron [17]. L-convex function is an
extension of submodular set function.

Let V be a finite set. A function f : Z¥ — RU{+oo} is called M-convex
if domgz f # 0 and it satisfies (M-EXC[Z]):

(M-EXCJZ]) Vz,y € domg f, Vu € suppt(z —y), v € supp™(z —y) such
that

f($)+f(y)zf(x_Xu+Xv)+f(y+Xu_Xv)a

where
domz f = {z € ZV | —00 < f(z) < 400},
supp*(z —y) ={w € V | z(w) > y(w)},
supp” (z —y) = {w € V | 2(w) <y(w)},

and x,, € {0,1}V is the characteristic vector of w € V. A function g :
ZV — RU{+oc} is called L-convex! if domz g # () and it satisfies (LF1[Z])
and (LF2[Z]):

(LF1[Z]) g(p)+9(a) 2 9(pAa)+9(pVa)  (Vp,q € domzyg),
(LF2[Z]) 3r € R such that g(p+ A1) = g(p) + Ar (Vp € domz g, \ € Z),

where pAg, pVq (€ RY) denote the vectors with (pAq)(v) = min{p(v),q(v)},
(pVq)(v) = max{p(v),q(v)} (v € V), and 1 (€ RY) is the vector with each
component being equal to one.

M /L-convex functions have nice properties:

¢ local optimality is equivalent to global optimality.

e M/L-convex functions can be extended to ordinary convex functions.

e M/L-convex functions are conjugate to each other.

e a (discrete) separation theorem and a Fenchel-type duality theorem hold
for a pair of M-convex/M-concave (L-convex/L-concave) functions.

The minimization of M/L-convex functions can be done in polynomial time
[11, 43]. Application of M-convex functions can be found in system anal-
ysis through polynomial matrices [25, 31, 33, 36], and in mathematical
economics [6].

M-convexity and L-convexity appear in various nonlinear combinatorial
optimization problems with integer variables. Such nice combinatorial

!In the original definition [32], an L-convex function is assumed to be integer-valued.
See Remark 6.1.
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properties, however, are enjoyed not only by combinatorial optimization
problems in integer variables but also by those in real variables. We dwell
on this point by considering the minimum cost flow/tension problems.

Let G = (V, A) be a directed graph with a specified vertex subset T' C V.
Suppose we are given a family of piecewise-linear convex functions f, : R —
R U {+o0} (a € A), each of which represents the cost of flow on the arc a.
A function £ : A — R is called a flow. The boundary 0§ : V — R of a flow
¢ is given by

Z{g | a(€e A) leaves v} (1)
_ Z{g | a(€ A) enters v} (vev).

Then, the cost function f : RT — R U {£oo} of the minimum cost flow
that realizes a supply/demand vector z € R” is defined by

£ eRA,
=inf< Y fa(é(a)) 8&( ) = —z(w) (w €T), » (z€R").(2)
acA ( ) ( € \ )

Suppose we are given another family of piecewise-linear convex functions
9o : R = RU{+00} (a € A), each of which represents the cost of tension
on the arc a. Any function p : V — R is called a potential. Given a
potential p, its coboundary ép : A — R is defined by

op(a) =p(u) —pv)  (a=(u,v) € 4). 3)

Then, the cost function g : RT — R U {00} of the minimum cost tension
that realizes a potential vector p’ € RT is written as

RY /
= inf {Z ga(—0p(a ‘ p(,leu) — p’(w) (weT) } (r' € RT)' (4)

a€A

It is well-known that the minimum cost flow/tension problems with piecewise-
linear convex cost can be solved efficiently by various combinatorial algo-
rithms (see [1, 42]). It can be shown that both f and g are polyhedral
convex functions (see Section 4 for the definition of a polyhedral convex
function), which is a direct extension of results in Iri [20] and Rockafellar
[42] for the case of |T'| = 2.
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We consider here the cost functions fz and gz for the integer version of
the minimum cost flow/tension problems:

£eZt,
fz(z) = inf Z fal€(a)) | O¢(w) = —z(w) (weT), p (z€Z”),
acA BEw) =0 (w e V\T)
gz(p') = inf {Z 9a(~p(a)) ‘ peZ’, (' € Z").
= p(w) =pl(w) (w € T)

It is shown in [32, 34, 35] that fz satisfies (M-EXCJ[Z]) and gz satisfies
(LF1[Z]) and (LF2[Z]), i.e., fz and gz are M-convex and L-convex, respec-
tively.

These results indicate that the polyhedral convex functions f and g
defined by (2) and (4) must have nice combinatorial properties like M-
convexity and L-convexity, respectively. As is shown later in Example 2.4,
f satisfies the property (M-EXC):

(M-EXC) Vz,y € dom f, Yu € supp™(z —y), v € supp~ (z —y), Jap >0
such that

f(@)+ f(y) > flz —alxu —xv) + (¥ + alxu — Xv)) (0 < Va<a),

which is a generalization of (M-EXCJ[Z]), and g satisfies (LF1) and (LF2):

(LF1) g(p) +9(q) 29(pAq) +9(pVg) (Yp,q€ domyg),
(LF2) 3r € R such that g(p+ A1) =g(p) + I (Vp € domg,VA € R),

which can be obtained by generalizing (LF1[Z]) and (LF2[Z]), where

domf = {reRY | —o0 < f(z) < 400},
domg = {peRY | —00 < g(p) < +00}.

The observation above indicates the possibility of extending the concepts
of M-convexity and L-convexity to polyhedral convex functions. This can
be done in the following way. For a polyhedral convex function f : RV —
R U {+00}, we call f M-convex if dom f # @ and f satisfies the property
(M-EXC). Similarly, for a polyhedral convex function g : RV — RU{+o0}
we call g L-convex if dom g # @ and g satisfies (LF1) and (LF2).

The aim of this paper is to investigate the structures of polyhedral M-
convex and L-convex functions from the dual viewpoint of analysis and
combinatorics, and to provide a nice framework for well-solvable nonlinear
combinatorial optimization problems in real variable. The organization of
this paper is as follows.
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Section 2 provides some natural classes of polyhedral M/L-convex func-
tions. We also prove the polyhedral M-convexity and L-convexity of the
functions f and g defined in (2) and (4).

To investigate polyhedral M/L-convex functions, we need to consider the
set version of M/L-convexity. A polyhedron B C RV is called M-convex if
it is nonempty and satisfies (B-EXC):

(B-EXC) Vz,y € B, Vu € suppt (z —y), v € supp™ (z —y), Jag > 0 such
that

z—alxy — Xv) € B, y+alx, — xv) € B (0 < Va < ag).

As is explained later in Theorem 3.3, an M-convex polyhedron is nothing
but the base polyhedron of a submodular system [17]. Similarly, a polyhe-
dron D C RV is called L-convex if it is nonempty and satisfies (LS1) and
(LS2):

(LS1) p, qe D= pAgq, pVqe D,
(LS2) pe D= p+ A1 €D (VA€R).

We investigate the structure of M/L-convex polyhedra in Section 3.

Section 4 shows fundamental properties of polyhedral M/L-convex func-
tions. We present various equivalent axioms for polyhedral M/L-convex
functions, and give some properties on local structure of polyhedral M/L-
convex functions such as directional derivatives, subdifferentials, minimiz-
ers, etc. In Section 4, we also investigate positively homogeneous polyhe-
dral M/L-convex functions, which are important subclasses of polyhedral
M/L-convex functions. It is shown that positively homogeneous polyhe-
dral M/L-convex functions have one-to-one correspondences with certain
set functions, and also with L/M-convex polyhedra.

For a function f: RY — R U {+oo}, its conjugate function f*:RY —
R U {£o0} is defined by

f*(p) = sup {({p,z) - f(z)}  (p€RY),

zeRYV

where (p,z) = Y {p(v)z(v) | v € V}. It is shown in [32, 35] that there
is a conjugacy relationship between integer-valued M/L-convex functions
over the integer lattice. In Section 5, we show that the conjugacy rela-
tionship also exists for polyhedral M/L-convex functions. Section 5 also
provides various characterization of polyhedral M/L-convex functions by
local structures such as directional derivative, the set of minimizers, and
subdifferentials.

As is mentioned above, the concepts of M/L-convexity were originally
introduced for functions defined over the integer lattice [29, 30, 32]. In
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Section 6, we clarify the relationship of M/L-convexity over the integer
lattice and polyhedral M/L-convexity discussed in this paper.

Finally, some duality theorems on polyhedral M/L-convex functions are
presented in Section 7. Although duality theorems in this section can
be obtained by application of the existing theorems in convex analysis to
polyhedral M/L-convex functions, they are worth stating in their own right
in connection to integrality properties. We also explain a more general and
stronger result on the transformation of polyhedral M/L-convex function
called “network induction.” The validity of network induction is proved by
using the duality for polyhedral M/L-convex functions.

In this paper, we focus on polyhedral convex functions with M /L-convexity.
The concepts of M /L-convexity can be further extended to general (not nec-
essarily polyhedral) convex functions by considering the property (M-EXC)
and properties (LF1), (LF2), respectively. Results in this direction will be
reported elsewhere.

2. EXAMPLES OF POLYHEDRAL M/L-CONVEX
FUNCTIONS

Polyhedral M-convex and L-convex functions have various examples. Let
V be a nonempty finite set.

EXAMPLE 2.1 (affine functions). Let B C RY be an M-convex poly-

hedron, pg € RY, and a € R. Then, the function f : RY — R U {+0}
such that

dom f = B, f(z) ={po,z) +a (x € B)
is polyhedral M-convex with equality in (M-EXC), which is an immediate
consequence of (B-EXC) for B.

Let D C RY be an L-convex polyhedron, 2o € RV, and v € R. Then,
the function g : RY — R U {+oc} such that

domg =D,  g(p)=(p,z0)+v (p€D)

is polyhedral L-convex with equality in the submodular inequality (LF1)
and r = (1,z0) in (LF2). |

We denote by C! the class of one-dimensional piecewise-linear convex
functions with a nonempty effective domain, i.e.,
C' ={p|¢:R = RU{+00}, piecewise-linear convex, domy # 0}. (5)

A piecewise-linear convex function (in this paper) is nothing but a one-
dimensional polyhedral convex function. Note that the effective domain
dom ¢ of a function ¢ € C! is a closed interval on R.
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ExaMPLE 2.2. For ¢ € C!, the function f : R?> - RU{+oc} defined by

[ p(x1) (z1+z2=0),
f(@r,22) = { f_oo (otherwise)

is polyhedral M-convex. For 9 € C!, the function g : R? - R U {+0o0}
defined by

9(p1,p2) =¥(p1 —p2) ((p1,p2) € R?)

is polyhedral L-convex. Furthermore, f and g are conjugate to each other
if ¢ and 1 are conjugate to each other. |

EXAMPLE 2.3 (separable-convex functions). Let B C RY be an M-

convex polyhedron. For a family of functions f,, € C! (w € V), the function
f:RY - RU{+o0} defined by

S fulow) @ e B),
f("L') = weV
+00 (z & B)

is polyhedral M-convex if dom f # {).
Let D C RY be an L-convex polyhedron. For functions g,, € C' indexed
by u,v € V, the function g : RV — R U {+oc} defined by

3 Gun(p(v) - p(w)) (€ D),
g(p) = u,veV
+00 (p¢ D)

is polyhedral L-convex with r = 0 in (LF2) if domg # 0. 1

EXAMPLE 2.4 (minimum cost flow/tension problems). In Introduction,
we have defined the cost functions f and g of the minimum cost flow/tension
problems by (2) and (4), respectively. We here state the following proper-
ties of f and g:

(i) f is polyhedral M-convex if f(zo) is finite for some 2y € R7T.
(ii) g is polyhedral L-convex if g(po) is finite for some py € RT.

(iii) Suppose that f, and g, are conjugate to each other for all a € A. Then,
f and g are conjugate to each other if one of the following conditions holds:

(a) f(wo) is finite (i.e., —oo < f(z) < +00) for some zo € RT,
(b) g(po) is finite (i.e., —00 < g(po) < +00) for some py € RT,
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(c) f(zo) < +00, g(po) < +oo for some o € RT, py € RT.

In the following, we prove (M-EXC) for f and (LF1), (LF2) for g. We
omit the proofs of (iii) and the following properties:

o if f(zo) is finite for some 2o € RY, then dom f # ) and f > —o0,
o if g(po) is finite for some py € RT, then domg # ) and g > —oo,

since their proofs are just a straightforward extension of the results in
[20, 42] for the case |T| = 2.

[(M-EXC) for f] Let z,y € dom f and u € supp™(z — y). Also, let
&,m € R4 be flows such that

o = (570 D o < (9 ED
f@) = Y faléla)), fy) = Y fa(n(a)).
a€A acA

Note that the existence of such £ and 7 is assured by the polyhedral con-
vexity of each f,. By a standard augmenting path argument we see that
there exist 7 : A — {0,%1} and v € supp™(z —y) (C T') such that

supp™ () C supp* (£ —n), supp™(m) Csupp (£ —n), OT =X — Xu-
Put
ao = min{|{(a) — n(a)| | @ € A, 7(a) # 0} > 0.
Let a be any value with 0 < a < ag. Then, we have

8(£ - a7r) =—-z+ a(Xu - Xv)a 3(77 + a7r) =—Yy—- a(Xu - XU)J
fa(€(a) — am(a)) + fa(n(a) + an(a)) < fa(é(a)) + fa(n(a)) (a € A),

which implies the inequality:

Fx —alxu — xv)) + Fly + alxu — X))
< Y {falé(a) — an(a)) + fa(n(a) + ar(a))}

a€A

< Y {falbl@) + fam(@)} = f(@) + f(y)-

a€A

Thus, f satisfies (M-EXC).
[(LF1) for g] Let p',q' € domg, and p,q € RV be vectors with

pw) =p'(w) (weT), qw)=qgw)(weT),
> 9a(=0p(@) = 9(@), D ga(—q(a)) = g(q).

a€A a€A
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Note that the existence of such p and q is assured by the polyhedral con-
vexity of each g,. For a = (u,v) € A, we have

9a(=6(p A q)(a)) + ga(—0(p V q)(a)) < ga(—dp(a)) + ga(—dq(a))
by the convexity of g,. It is obvious that
PADw) =@ Ad)w), (PVa(w)=E V) (w) (weT).

Hence, we have

9P A +9@' V) < Y gu(=5A Q@)+ Y gu(—=(pV @) (a))

a€A a€A
< Y 9a(=0p(a)) + D ga(—q(a)) = g(@') + 9(d')-
a€A a€A

[(LF2) for g] Let 17 (resp. 1y) be the vector in RT (resp. RY) with
each component being equal to one. For p' € RT and A € R, we have

g(p' + A\11)
. fod p e RV’
= inf {;ga(_(sp(a)) ‘ g(w) = pl(’w) + A (U) (S T) }
. B peRY,
= inf {aezAga( 3(p+A1v)()) ‘ p(w) + A =p'(w) + A (weT) }
‘ eRY, '
= inf {;ga(—(ﬁ)(a)) ‘ g(w) =p'(w) (weT) } = 9@) 1

3. M-CONVEX AND L-CONVEX POLYHEDRA

In this section, we introduce two classes of polyhedra, called M-convex
polyhedra and L-convex polyhedra. In fact, M-convex and L-convex poly-
hedra are familiar objects in combinatorial optimization, and this section is
a recapitulation of almost known facts on these polyhedra from our point of
view. The results in this section will be the basis of argument on polyhedral
M-convex and L-convex functions beginning in Section 4.

3.1. Definitions and Notation

We denote by R the set of reals, and by Z the set of integers. Also,
denote by R the set of nonnegative reals. Throughout this paper, we
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assume that V' is a nonempty finite set. For any finite set X, its cardinality
is denoted by |X|. The characteristic vector of a subset X C V is denoted

by XX (E {07 ]-}V)a Le.,

_J1 (weX),
XX(“’)_{O (ZGV\X).

In particular, we use the notation 0 = g, 1 = xv.
Let z = (z(w) | w € V) € RY. We define

supp(z) = {v € V | z(v)
suppt(z) = {v € V | z(v) >0}, supp~ (z

Izl =Y le@)], @]l = max|a(v)],

veV
(p,) = p)z) PeR),  #(X)=) @) (X CV).
veV veX

We sometimes write Oy, 1y, and {(p, )y to indicate that 0, 1, p, and x are
vectors in RV.
For € > 0, we define

Noo(z,6) = {y € RV | [ly — z[|oc < }-
For any p,q € RV, p A q and pV q denote the vectors in RY such that

(p A @)(w) = min{p(w), g(w)}, (pV ¢)(w) = max{p(w),q(w)} (weV).

Fora:V = RU{-oc}and b:V — RU{+o0} with a(v) < b(v) (v € V),
we define the interval [a,b] (C RY) by

[a,0] = {x € RY | a(v) < z(v) < b(v) (v € V)}.

For any two vectors p,q € R, we denote Box[p,q] = [pAg,pV q].

Let S C RY. The set S is called convez if (1 — a)x + ay € S holds for
any z,y € S and any a € [0,1], and called conic if ax € S holds for any
z € S and any a > 0. A conic set is also called a cone. The convex hull of
S, denoted by conv(S), is the smallest convex set containing S; that is,

k

conv(S) = {Z Ai;

i=1

k
k>1, 2; €S, Aizo,ZAiﬂ}.

i=1

Note that S is convex if and only if S = conv(S). For any set S C RV,
the convex closure of S, denoted by S, is the smallest closed convex set
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containing S. Hence, N (,¢) denotes a closed neighborhood {y € RV |

ly — zllo < e}

A set S C RY is called polyhedral if it is represented as the intersection of
a finite number of closed half-spaces, i.e., there exist some {p;}¥_; (CRY)
and {a;}*_, (CR) (k > 0) such that

S={zeRY|pna)<a; Vi=1,---,k)} 6)

A polyhedral set is also called a polyhedron. Obviously, any polyhedron is
a closed convex set.
We use the following convention involving +oo:

inf{a | @ € 0} = +00, sup{a|a €0} =—oc0, +o0 < +00, —00 < —00,
0 x (+00) = (+00) x 0=0 % (—00) = (—00) x 0 =0.

In this paper, we never use expressions such as +00 — 0o or —oo + 0o.

3.2. M-convex Polyhedra

A polyhedron B C RV is called M-convez if it is nonempty and satisfies
(B-EXC):
(B-EXC) Vz,y € B, Vu € supp™t (z —y), v € supp™ (z —y), Jag > 0 such
that

z—alXxu—Xv) €EB, y+alxu—xv) €EB (0 <Va<La).

We denote by Mg the family of M-convex polyhedra, i.e.,
Mo ={B CRY | B: M-convex polyhedron}.

It is well-known as a folklore that what we call an “M-convex polyhedron”
is nothing but the base polyhedron of a submodular system [17] (see also
Theorem 3.3). We use the term “M-convex polyhedron” for denotational
symmetry to “L-convex polyhedron.”

3.2.1. Properties of M-convex Polyhedra
For any S C RY and z € S, the exchange capacity és(z,v,u) (u,v € V)
is defined by
é'5'(:571}710 = sup{a | a € R+7 z +a(XU _Xu) € S}7

where the subscript S to ¢ may be omitted when there is no ambiguity.
The property (B-EXC) can be rewritten in terms of exchange capacity, as
follows:
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(B-EXC') Vz,y € B, Yu € suppt(z — y), v € supp (z — y) such that
ép(z,v,u) >0, ép(y,u,v) > 0.

We also consider a one-sided exchange property:

(B-EXC_) Vz,y € B, Yu € supp™(z — y), Jv € supp— (z — y) such that
ép(z,v,u) > 0.

The exchange property (B-EXC_), apparently weaker than (B-EXC), is in
fact equivalent to (B-EXC).

THEOREM 3.1. For a polyhedron B C RY, (B-EXC) <= (B-EXC.).

Proof. Proof is given in Section 3.2.3. |

Fundamental properties of M-convex polyhedra are shown below. An
M-convex polyhedron is contained in a hyperplane {z € RV | 2(V) = r}
for some r € R.

THEOREM 3.2. Let B C RY be a polyhedron with (B-EXC_). Then,
z(V) =y(V) (Vz,y € B).

Proof. Assume, to the contrary, that zo(V) > yo(V) holds for some
o, Yo € B. Let x, € B be a vector with

.« = yolly = inf{[|z — yoll1 [ € B, (V) = zo(V)}.

Note that supp™t(z. — yo) # 0. Let u € supp™(z« — yo). By (B-EXC_),
there exist some v € supp™ (2« — yo) and a sufficiently small a > 0 such
that ¢’ = z. — a(xu — Xv) € B. It, however, is a contradiction to the

choice of z, since z' (V) = zo(V) and ||z’ — yo|l1 = ||z« — yol1 — 2. |
We shall show that an M-convex polyhedron is described by a submod-
ular set function. Let p: 2 — R U {+o00} and denote domp = {X C V|
p(X) < +o0}. A function p is said to be submodular if it satisfies
p(X)+p(Y) > p(XNY)+p(XUY) (VX,YCV).  (7)

We denote the class of (normalized) submodular set functions by

S={p:2¥ 5 RU{+oc} | p:submodular, p(6) =0, p(V) < +oc}.



14 MUROTA AND SHIOURA

A set function p : 2V — R U {—oo} is called supermodular if —p is sub-
modular. For any nonempty B C RY, define pp : 2V = R U {+o00} by

pB(X) = ilelgw(X) (X CV). (8)

For a set function p : 2 — R U {40}, we define B(p) C RY by
B(p) = {z e RV [ z(X) < p(X) (X C V), 2(V) = p(V)}. 9)

Note that the exchange capacity associated with x € B(p) can be written
as follows [17]:

és(p)(z,v,u) =min{p(X) —2z(X) | X CV,u ¢ X, ve X} (yveV).
(10)

The following fact has been known to experts (cf. [4], [9], [46, Chapter 18]),
but the precise statement cannot be found in the literature.

THEOREM 3.3.
(i) For B € My, we have pp € S and B(pg) = B.
(ii) For p € S, we have B(p) € Mo and pg(,) = p.
(ii) The mappings B — pp (B € Mg) and p — B(p) (p € S) provide
one-to-one correspondences between Mg and S, and are the inverse of each
other.

Proof. Proof is given later in Section 3.2.3. |
For any sets S1,S> C RY, we denote by S; + S> (C RY) the Minkowski-
sum of S; and Ss, i.e.,

Si+S={p1+p|pi€S;(i=1,2)}

THEOREM 3.4 ([17]). For By, By € My, the set By + Bs is M-convex
with By + By = B(pB1 + pB2).

REMARK 3.5. The intersection of two M-convex polyhedra is not neces-
sarily an M-convex polyhedron, as shown in the example below.
Let V = {a,b,c,d}, and define By, B> C RV as
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Then, B; and By are M-convex polyhedra, and the submodular functions
pi = pB; (i =1,2) defined by (8) are

pi(0) =0, pi({v}) =1forveV (i=1,2),

pi(X)=2for X CV with |X| >3 (i=1,2),

pi({a,d}) = p({d,c}) = 1,

pi({a,b}) = p1({e,d}) = p({a, c}) = p1({d,d}) = 2,

Pz({ba d}) =1,

p2({a,b}) = p2({a, c}) = p2({a,d}) = p2({b,c}) = p2({c, d}) = 2.
We see that

Bl m B2 = COI’IV{(]., ]‘7 07 0)7 (]‘7 07 17 0)7 (07 07 17 1)}7
which is not an M-convex polyhedron. Note that the associated set function

P = pBinB, in (8) is

p({a,d}) = p({bc}) = p({b,d}) = 1,
p({a,5}) = p({e,d}) = p({a,c}) = 2,
p(X) = p1(X) = pa(X) if |X] # 2,

which is not submodular. |

Separation theorems of the following form hold for submodular functions
and M-convex polyhedra. The latter half of Theorem 3.7 is already shown
in [34, Theorem 3.6].

THEOREM 3.6 (Frank [12]). Letp:2¥ - RU{+o}, p:2¥ > RU
{—o0} be a pair of functions with p,—p € S. If p(X) < p(X) (VX CV),
then there exists . € RY such that

p(X) <z (X) <p(X) (VX CV).

Moreover, if p and p are integer-valued, then there exists such x, € ZV .

THEOREM 3.7. Let B1,Bs € My. If BN By = (), then there exists
px € {0,1}V U {—xv} such that

inf (p.,z) — sup (p«,z) > 0. (11)
z€B: z€B3

Moreover, if both of By and Bz are integral polyhedra, i.e., B; = B;NZV
(1=1,2), then “>0” in (11) can be replaced by “> 1.”
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Proof. Put p; = pp, (i =1,2). If p1 (V) # p2(V), then we can choose
p« = xv or —xv. Hence, we may assume that p; (V) = p2(V). Define the
functions p and p by

pX)=p1(V) —p1(V\X), p(X) =p2(X) (X CV).

Then, p, —p1 € S and thereis no z € RV with u(X) < z(X) < p(X)
V). By Theorem 3.6, there exists some Xo C V such that pu(Xo) >
Since

(VX C
p(Xo)-

inf <XX07'Z'> = H(XO) > sup (XX07$> = p(XU)J
reBy T E€Bg

we can choose p, = xx,- The second claim follows from the integrality of

Bi,B>. 1|

3.2.2.  MP-convex polyhedra

Theorem 3.2 shows that an M-convex polyhedron is contained in a hy-
perplane of the form {z € RY | z(V) = r} for some r € R. Therefore,
any M-convex polyhedron loses no information by the projection onto a
(|V|—1)-dimensional space. We call a polyhedron @ C RY M?-convez if
the set Q (C RY) defined by

Q ={(z0,2) eRY |z € Q, 20 = —2(V)} (12)

is an M-convex polyhedron, where V = {vo} UV. In fact, by the results
of [15, 17], what we name M®-convex polyhedron here is nothing but a
generalized polymatroid in [13, 14], where a generalized polymatroid is a
nonempty set Q C RY given by

Q={reRY | uX)<az(X) < p(X) (X CV)} (13)

with a pair of submodular/supermodular functions p : 2V — R U {400},
p: 2V — R U {—oo} satisfying the following inequality:

p(X) —p(Y) 2 p(X\Y) —p(Y \ X) (X,Y CV).

ME-convex polyhedron is an essentially equivalent concept to M-convex
polyhedron, while the class of Mf-convex polyhedra properly contains that
of M-convex polyhedra. Every property of M-convex polyhedra can be
restated in terms of Mf-convex polyhedra, and vice versa.
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Mb-convex polyhedra can be characterized by various exchange proper-
ties, as follows (cf. [37, Remark 5.2], [45]). For @ C RY and u,v € V, we
denote

&Q(.'L',(D,u) = sup{a|a € Ry, T —ax, € @},
sup{a|a € Ry, z+ axy € Q}.

Q
Q
—~
8
“ﬁ

=

I

(G-EXC) Vz,y € Q, Yu € supp™ (x — y), either (i) or (ii) (or both) holds:
(i) Jv € supp ™ (z — y) such that ég(z,v,u) > 0 and ¢y, u,v) > 0,

(i) ég(z,0,u) > 0 and ég(y,u,0) > 0.

(G-EXC_) Vz,y € Q, Yu € supp™(z — y), either ég(z,v,u) > 0 (Fv €
supp~(z — y)) or ¢g(z,0,u) > 0.

THEOREM 3.8. Let Q C RY be a nonempty polyhedron. Then,
Q is MP-convexr <= Q satisfies (G-EXC) <= Q satisfies (G-EXC_).

Proof. Proof is given later in Section 3.2.3. |

The following property, which seems more natural when described in
terms of Mf-convex polyhedron, is obvious from (13).

TrEOREM 3.9. Let Q C RY be an M*-convex polyhedron. Then, [z,y] C
Q@ holds for any z,y € Q with x < y.

3.2.8.  Proofs

This section provides the proofs of Theorems 3.1, 3.3, and 3.8.

We use the following results on submodular set functions. A family
D C 2V is called a distributive lattice if X NY,X UY € D holds for any
X,Y € D. Note that dom p of a submodular function p € S is a distributive
lattice.

THEOREM 3.10. Let p € S. For any x € B(p), the family D(z) = {X C
V] 2(X) =p(X)} is a distributive lattice with {0,V} C D(x).

We first prove a slightly stronger claim than Theorem 3.3 (i). A sequence
{X:}t_, (k > 0) of distinct elements in 2V with Xo C X; C --- C Xj is
called a chain.
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LeEmMA 3.11. Let B C RY be a nonempty polyhedron with (B-EXC_),
and {X;}¥_o (k > 0) be a chain such that {X;}¥_, C dom pp. Then, there
exists x» € B with x.(X;) = pp(X;) (i =0,1,---,k).

Proof. The claim is shown by induction on the integer k. Let z; € B be
a vector with z(Xy) = pp(Xk). By the inductive hypothesis, there exists
a vector ¢ € B satisfying x(X;) = pp(X;) (: = 0,1,---,k —1). We may
assume that z minimizes the value ||z — zx||1 of all such vectors. Suppose
that z(X) < pp(Xg). By (B-EXC_), there exist u € suppt(z — zx) \ Xx
and v € supp™ (z — x) such that 2’ = z — a(xy — xv) € B with a suf-
ficiently small & > 0. Here v € V' \ Xj;_1 holds since u € V' \ X;_1 and
' (Xg_1) < p(Xg_1) = (Xr_1). The vector z' satisfies ' (X;) = pp(X;)
(:1=0,1,---,k—1) and ||z’ —zx||1 = ||z —zk||1 — 2, a contradiction. Hence

z(Xy) = pp(Xi)- 1
For any polyhedron S C RY, a vector x € S is called an extreme point

of S if there are no y;,y2 € S\ {z} and @ € R with 0 < a < 1 such that
z=oay + (1 —a)ys.

TueoreM 3.12 ([17, Theorem 3.22]). Let p€ S. Then, z € RY is an
extreme point of B(p) if and only if there exists a chain {X,}ll‘:/l) such that

{Xz}lzz‘() Cc dompa Xo = @7 X\V| = V7
z(X;) = p(Xi) (i=0,1,---,[V]).

LEMMA 3.13. For any nonempty polyhedron B C RY with (B-EXC_),
we have pp € S and B = B(pg).

Proof. 'The outline of the proof is similar to that for [4, Lemma 5.2].

We first consider the case when B is bounded. Let X,Y € dompp.
From Lemma 3.11, there exists z. € B with z,(X NY) = pp(X NY) and
2. (X UY) = pp(X UY), which implies the inequality

pe(X) +pp(Y) 2 2. (X) +z.(Y)
= 2,(XNY)+z,(XUY) = pp(XNY)+pp(XUY).

Therefore, pp € S. Lemma 3.11 and Theorem 3.12 imply that any extreme
point of B(pp) is contained in B, which shows that B(pg) C B. The reverse
inclusion is obvious.
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Next, assume that B is unbounded. Let zy be any vector in B. For each
nonnegative integer k, put By, = {z € B | ||z — 2¢||eo < k} and pr = pB,.
Since each By, is a bounded M-convex polyhedron, it holds that p; € S and
By, = B(py). Hence, we have B(pg) = U, B(px) = Ure; Br = B, and

pe(X) +pp(Y) = lim {py(X) + pp(Y)}
> lim {pr(XNY) +pp (X UY)}
p(XNY)+pp(XUY)

for any X,Y € dompp,ie., pp€S. |
Next, we prove Theorem 3.3 (ii).

LEMMA 3.14 (cf. [17]). Letpe S,z € B(p), andu € V. Put
Xo={veV|éz,v,u) =0}, Yy={veV|i(z,u,v) >0}

Then, we have u € V' \ Xo, 2(Xo) = p(Xo), and u € Yy, 2(Yo) = p(Yo).

Note that the set Y in Lemma 3.14 is nothing but the dependence function
dep(z,u) defined in [17].
We consider another one-sided exchange property:

(B-EXC,) Vz,y € B, Yu € supp™ (z — y), v € supp™(z — y) such that
ép(y,u,v) > 0.

LEMMA 3.15. For any p € S, the set B(p) satisfies (B-EXC_) and (B-
EXC,).

Proof. We prove (B-EXC_) only, since (B-EXC,) can be shown in the
similar way. Let z,y € B(p) with z # y and u € suppt(z — y). To the
contrary assume é(z,v,u) = 0 for all v € supp™(z —y). Put Xo ={v eV |
é(z,v,u) = 0}. By Lemma 3.14 we have 2(Xo) = p(Xo) > y(Xo), whereas

2(Xo) < y(Xo) since u € V\ Xy and supp~ (z—y) C Xo, a contradiction. ||
LEMMA 3.16. Let B C RY be a nonempty polyhedron with (B-EXC_)

and (B-EXC,). For any z,y € B, and v € supp™ (z — y), there exists
y' € B such that

y'(v) =z(v), =z(w) >y (w)>y(w) (wesuppt(z—1y)),
y'(w) =y(w) (w ¢ {v} Usuppt(z —y)).
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Proof. Put supp™(z —y) = {u1,u2, -+, ur} (k > 1), and yo = y. For
1=1,2,---,k, we define a; € R and y; € B iteratively as follows:

o; = min{y;_1(v) — z(v), 2(w;) —yi—1(ui), E(yiz1,ui,v)},
Yi = Yic1 + &(Xus — Xo)-

Assume yi(v) > z(v). By (B-EXC_), there exists some u; € supp™ (yg —
z) C supp™ (z—y) such that § = yr—a(xv—Xu;) € B for a sufficiently small
a > 0. Since u; € supp™ (§—y;) and supp~ (§—v;) = {v}, (B-EXC,) implies
Yi+8(xu; —Xv) € B for a sufficiently small 8 > 0, a contradiction to the fact

that a; = é(yi—1,us,v). |

LEMMA 3.17. For any p € S, the set B(p) satisfies (B-EXC).

Proof. Firstly note that B(p) satisfies (B-EXC_) and (B-EXC,) by
Lemma 3.15. Let z,y € B(p) with z # y and u € supp™(z — y). Put
Yo = {v € V| é(y,u,v) > 0}. Applying Lemma 3.16 repeatedly, we have
some y' € B(p) such that

y'(v) = z(v) (v € supp (z —y) \ Vo),
z(w) > y'(w) > y(w) (w € suppt(z —y)),
y'(w) = y(w) (w & (supp™(z —y) \ Yo) Usupp™t(z —y)).

Moreover, y'(w) = y(w) holds for w € suppt(z — y) N Yy since otherwise
y'(Yo) > y(Yo) = p(Yo) by Lemma 3.14, a contradiction. In particular,
y'(u) = y(u) < z(u). Applying (B-EXC_) to z, v, and u € supp™ (z —y'),
we have vy € supp (z — y') with é(z,vo,u) > 0. From supp (z — ¢') =
supp~(z — y) N Yy follows é(y,u,v9) > 0. |

THEOREM 3.18 ([17]). For any p € S we have B(p) # 0 and pp(,) = p.

Theorem 3.3 (iii) is an immediate corollary of Lemmas 3.13, 3.17, and
Theorem 3.18.
We then give the proof of Theorem 3.1.

Proof of Theorem 3.1 The implication (B-EXC) = (B-EXC_) is ob-
vious. Let B C RY be a nonempty polyhedron with (B-EXC_). Then, we
have pgp € S and B = B(pg), as shown in Lemma 3.13. Hence, Lemma
3.17 implies (B-EXC) for B. |
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Finally, we prove Theorem 3.8. Since the implications “Q is M?-convex
= (G-EXC) = (G-EXC_)” are easy to see, we show “(G-EXC_) = Q is
Mé-convex” only.

We first note that (G-EXC_) for @ is equivalent to the following property
for Q defined by (12):

(G-EXC_) Vz,y € Q, Yu € supp™ (z—y) \{vo}, Jv € supp™ (¢ —y) U{vo}
such that é5(z,v,u) > 0.

Using this property, we prove the submodularity of po and the equation
Q= B(pg), where pg : 2V 5 RU {+oo} and B(pg) C RY are defined by
(8) and (9), respectively. The proof is similar to that of Theorem 3.3 (i).

LEMMA 3.19. Let {X;}t , (k > 0) be a chain such that {X;}f , C
dom pg. Then, there ezists x. € Q with z.(X;) = pp(X;) (1 =0,1,---, k).

Proof. The claim is shown by induction on the integer k. By the
inductive hypothesis and the definition of pg, there exist vectors z,y € @
such that

Y(Xo) = pg(Xo). (15)

Let .,y € Q be a pair of vectors minimizing the value ||z, — y.|1
among all pairs of vectors z,y € @ satisfying (14), (15), and z(Xo) =
max{z'(Xy) | #' € Q, (14)}. We further assume that z, and y, maximize
the value y.(vo) — =« (vo) among all such vectors.

Claim y,(w) < z.(w) (Vw € V' \ (Xo U {wo}))-
Assume, to the contrary, that there exists some wg € V'\ (XoU{vo}) with
Y« (wg) > T4 (wo). Then, (G*-EXC_) implies either (a-1), (a-2) or (a-3):

(a-1) Jv € Xo such that &5(y«,v,wo) > 0,
(a-2) Jv € supp~ (¥« — 7«) \ Xo such that ¢5(y«,v,wo) > 0,
(a-3) vo € V'\ Xo, y«(vo) > @x(v0), and &5(y«, v, wo) > 0 for v = vy.

Put 3’ = y, — a(Xuw, — Xo) € Q, Where « is a sufficiently small positive
number. In either case we have a contradiction:

(a-1) = y'(Xo) > pg(Xo),

(a2) = y'(Xo) =p5(Xo), [y — z«ll1 < |lyx — 2x|l1,

(@3) = y'(Xo)=ps(Xo), [y —z«ll1 = [lyx — 2s|l1,
y'(v0) — «(v0) > yx(vo) — T (v0)-
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[End of the proof of Claim]

Suppose that either vg € V' \ X and z.(vo) > y«(vo), or vy € X holds.
Then, for i = 1,2,---, k, we have

(X)) = yu(V) =y (V \ X5)
4 \ X

> 2. (V) 2. (V\X;) = 2.(X) = pg(Xa),
implying y.(X;) = p5(X;). It remains to consider the case where
vg €V \ Xo, Zx(v0) < ys«(vo)- (16)

Assume, to the contrary, that z.(Xo) < p5(Xo) = y«(Xo). Then, there
exists some u € suppt(z. — y.) \ Xo. Hence, (G-EXC_) implies either
(b-1) or (b-2):

(b-1) Jv € supp™ (2 — y«) N Xo such that é5(zs,v,u) >0,
(b-2) ég(zs,v,u) > 0 for v = vo.

Put ' = 2, + a(xy — Xu) € Q, where a is a sufficiently small positive num-
ber. In case of (b-1), we have u € X; \ Xj since z, satisfies (14). Therefore,
2’ also satisfies (14) and z'(Xo) > z.(Xo), a contradiction. In case of (b-2),
we have z'(Xo) = z.(Xo) and ||z' —y«||1 < ||z« —y«||1 by (16), a contradic-

tion. |

In the same way as the proof of Lemma 3.13, we can show that P € S
and Q = B(pg) by using Lemma 3.19 and Theorem 3.12.

3.3. L-convex Polyhedra

A polyhedron D C RV is called L-convez if it is nonempty and satisfies
(LS1) and (LS2):

(LS1) p,ge D= pAgq, pVqge D,
(LS2) pe D=p+ Al €D (VYAeR).

We denote by L, the family of L-convex polyhedra, i.e.,

={D CRY | D: L-convex polyhedron}.

3.3.1.  Properties of L-convex Polyhedra
The properties (LS1) and (LS2) can be characterized by local properties:
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(LS1i0c-a) Vp € D, Je > 0 such that

p1,p2 € DNNeo(p,e) = p1 Ap2, p1Vp2 €D,
(LS1joc-b) Vp,q € D, 0 < Je <1 such that
(I1-¢e)p+e(phg)eD, (1-¢)p+e(pVvyg €D,

(LS216c) Vp € D, 3 > 0 such that p+ A1 € D (VA € [0,¢]).

THEOREM 3.20. Let D C RV be a closed set.
(i) If D is convez, then (LS1) <= (LSljsc-a) <= (LS1liee-b).
(ii) (LS2) <= (LS20c)-

Proof. (i): Since (LS1) = (LS1jec-a) is obvious, we show (LS1joc-a) =
(LS1jpe-b) = (LSI).

Assume (LS1j,c-a). Let p,q € D, and € be the value in (LS1j,c-a) asso-
ciated with p. The convexity of D implies (1 —&')p + &'q € D N N (p,€)
for a sufficiently small &’ > 0. Hence, we have

pA{(1—-¢&)p+e'qgt=(1-¢€)p+e(png) €D,
pV{l-é&)p+e'qgt=(1-¢€)p+e(pvq €D,

i.e., (LS1joc-b) holds.
Next assume (LS1jc-b) for D to prove (LS1). Let p,q € D. We show
pAq € D only, since pV q € D can be shown similarly. Set

a.=sup{a|0<a<l, 1-a)p+a(pAg) € D},
P = (1 —au)p+as(pAq) (€ D).

Assume a, < 1. By (LS1joc-b), there exists some £ with 0 < £ < 1 such
that

(I—eps+elpeANg)=(1—e—axt+ea)p+ (e +a.—ca)(pAg) €D,

a contradiction to the definition of a.. Hence a. =1 and p A ¢ € D hold.

(ii): We show the direction (LS2i,.) = (LS2) only. Let p € D and
A« =sup{A | A € Ry, p+A1 € D}. To the contrary assume that A, < 4o0.
Then, we have p, = p+ A1 € D. However, (L.S2,.) implies p, + &1 € D
for some £ > 0, a contradiction to the definition of A,. Thus we have

p+ A1 € D for all A > 0. Similarly, we have p+ A1 € D for all A <0. |
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We show the system of inequalities which describes the polyhedral struc-
ture of L-convex polyhedra.

A function v: V xV = RU {400} with y(v,v) =0 (Vv € V) is called a
distance function. For a distance function v, define the set D(y) C RY by

D(7) = {p € R" | p(v) = p(u) < 7(u,v) (u,v € V)}. (17)

Given a nonempty set D C RV, the function yp : V x V — R U {400} is
defined by

vp(u,v) = sup{p(v) — p(u)}. (18)
peD

Note that 7yp is a distance function, and D C D(yp) holds in general.
Given a distance function v, we denote by G, the directed graph with the
vertex set V and the arc set Ay = {(u,v) | u,v € V, u # v, v(u,v) < +00},
where the value y(u, v) is regarded as the length of the arc (u,v) € A,. For
u,v € V, let F(u, v) be the length of a shortest path from u to v in G,, i.e.,

F(u,v) = inf{ Z Y| PCA,, P: path from u to v}.
(u' w'")EP

It is well-known that ¥ > —oc if and only if G, has no negative cycle.
We consider the triangle inequality

v(v1,v2) + y(v2,v3) > Y(v1,v3) (Vv1,va,v3 € V) (19)

for a distance function, and let 7 be the family of distance functions with
triangle inequality, i.e.,

T={y]|v:VxV =>RU{+0}, v(v,v) =0 (v € V),  satisfies (19)}.

Note that for any distance function v: V xV = RU {400}, if 7 > —o0
then ¥ € T, and if v € T then 7 = ~.

LEMMA 3.21. Lety:V xV = RU {+o0} be a distance function.
(i) D(y) #0 < G, has no negative cycle.
(i) D(¥) %0 — D(3) = D(3).
(iii) D(y) # 0 = D(v) € Lo.
(iv) If y€ T, then D(v) # 0 and v = yp(y)-
(v) If y(u,v) € ZU{+00} (Vu,v € V), then D(v) is an integral polyhedron,
i.e., D(y) =D(y)NZV.
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Proof. (i), (ii): These are well-known facts. See, e.g., [20, 23].
(iii): (LS2) for D(v) is obvious. To show (LS1) for D(y), we take p,q €
D(7). Then, it is easy show that

PAQW) = (PAQu) <v(w,v), @V — (Ve (w) <(u,v)

for any u,v € V,ie., pAq,pVq€ D.
(iv): Since v € T, the graph G, has no negative cycle and therefore
D(v) # 0 by (i). We have

Y(u,v) =F(u,v) = sup {p(v) — p(u)} = Yp(r) (4,0),
pED(7)

where the second equality is by a fundamental result concerning the short-
est path problem.
(v): The claim is obvious from the total unimodularity of the coefficient

matrix of the system of inequalities in (17). |

LEMMA 3.22. For any nonempty polyhedron D C RV, we have yp € T.
Moreover, if D € Ly, then D(vp) = D.

Proof. The first claim is clear from the following inequality: for any
v1,v2,v3 € V, we have

vp(v1,v2) + D (v2,v3) = sup{p(v2) — p(v1)} + sup{p(vs) — p(v2)}
peED peED

\Y%

sgg{p(vg) —p(v1)} = yp(v1,v3).

Suppose D € Ly. We show that D(yp) C D. Let ¢ € D(vyp). For any
u,v € V there exists py, € D with py,(v) — pup(u) > q(v) — g(u), where
we may assume that py,(u) = g(u) and py,(v) > g(v) by (LS2). For each

u € V, the vector p, = \/ ¢y Puv (€ D) satisfies p,(u) = q(u), pu(v) > q(v)
(Vv € V). Therefore, g = A, cy pu € D. |

THEOREM 3.23.
(i) For D € Ly, we have yp € T and D(yp) = D.
(ii) For v € T, we have D(vy) € Lo and Yp(,) = 7-
(iii) The mappings D — vp (D € Loy) and v — D(v) (v € T) provide a
one-to-one correspondence between Lo and T, and are the inverse of each
other.
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Proof. Immediate from Lemma 3.21 (iii), (iv), and Lemma 3.22. |

As a special case of L-convex polyhedra, we investigate the class of L-
convez cones, which are conic L-convex polyhedra. This amounts to re-
stricting the function values of v to {0,+c0}. We show below the re-
lationship of L-convex cones with “transitive” directed graphs, and with
distributive lattices.

A directed graph G = (V, A) is called transitive if for any (u,v), (v,w) €
A we have (u,w) € A. Given a set of vectors D C RY, we define the
directed graph Gp = (V, Ap) by

Ap ={(u,v) [u,v €V, p(u) > p(v) (Vp € D)}.
For a directed graph G = (V, A), the set Dg (C RY) is defined by
Dg = {p € R" | p(u) > p(v) (V(u,v) € A)}.

The next theorem is an immediate consequence of Theorem 3.23.

THEOREM 3.24.
(i) For any L-convex cone D C RY, Gp = (V,Ap) is transitive and
D¢g, =D.
(ii) For any transitive directed graph G = (V,A), Dg (C RY) is an L-
convez cone and Gp, = G.
(iii) The mappings D — Gp and G — D¢ provide a one-to-one correspon-
dence between L-conver cones D (C RY) and transitive directed graphs
G = (V,A), and are the inverse of each other.

On the other hand, Birkhofl’s representation theorem [2] yields a one-to-
one correspondence between transitive directed graphs G = (V, A) and dis-
tributive lattices F (C 2V) with {§, V} C F. This fact, together with The-
orem 3.24, provides a one-to-one correspondence between L-convex cones
and distributive lattices, as follows.

Given a set of vectors D C RV, we define Fp C 2V by

]—'D:{XQV|XXGD}.
For any family of subsets F C 2V with {#, V} C F, define D C RV by

D}':{Z Axxx | Ax 20 (X e F\{V})}.
XeF
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THEOREM 3.25.
(i) For an L-convex cone D C RY | Fp is a distributive lattice with {§,V} C
Fp, and Dg, = D.
(ii) For a distributive lattice F C 2V with {0,V} C F, D is an L-convex
cone and Fp, = F. Moreover, for any p € Dx there exists a chain Fo with
{0,V} CFy CFandAx € R (X € Fy) such that \x >0 (VX € Fo\{V})
and p = ZXE]-'O AXXX-
(iii) The mappings D — Fp and F — Dx provide a one-to-one correspon-
dence between L-convex cones D (C RY) and distributive lattices F (C 2V)
with {0,V} C F, and are the inverse of each other.

The intersection of L-convex polyhedra is also L-convex.

THEOREM 3.26. Let D1,Ds € Lo. Definey:V xV = RU {+0} by
~¥(u,v) = min{yp, (u,v),yp, (u,v)} (u,v € V). Then,
(i) Dy N Dy = D(v), (ii) D1 N Dy # 0 <= G, has no negative cycle,
(iii) D1 N Dy #@: D1 N Dy Eﬁo.

Proof. The claim (i) follows from Dy N Dy = D(vp,) ND(yp,) = D(%).
The claims (ii) and (iii) are by (i) and (iii) of Lemma 3.21, respectively. |

REMARK 3.27. The Minkowski-sum of two L-convex polyhedra is not
necessarily an L-convex polyhedron, as shown below.
Put V = {a,b,c,d}. Let v1,72 : V x V — {0,1} be such that

7 (u,v) =1 <= (u,v) € {(c,a),(c,b),(d,a), (d, ), (d,c)},
Y (u,v) =1 <= (u,v) € {(b,a),(b,c),(d,a),(d,d),(d,c)}.

Since 71,72 € T, we have D(v1),D(y2) € Lo by Lemma 3.21. However,
D =D(y1) + D(92) is not L-convex. Let

b= (1717070)7 b2=q = (0707070)7 q2 = (1707170)

Then, it holds that p;, ¢; € D(y;) (i = 1,2). Hence, we have p1+p2,q1+¢2 €
D, but (p1 +p2) A (1 +g2) = (1,0,0,0) ¢ D. Note that

{p € D(m) | p(d) = 0} = conv(S;) (i =1,2),
{p € D | p(d) = 0} = conv(S1 + S2),

where
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Separation theorems of the following form hold for distance functions
with triangle inequality and for L-convex polyhedra.

THEOREM 3.28. Lety:V xV = RU{+o00}, v:V xV - RU{-00}
be functions such that v, —v € T . Suppose that

k

E 14 'U21+1 ) U2z
i=1

holds for any distinct elements {U,}fﬁl C V with vagy1 = v1. Then, there
exists p. € RY with

UZZ 15 U2z

||M?r

v(u,v) < pe(v) = pu(u) <(u,v)  (Vu,veV). (20)

Moreover, if v and v are integer-valued, then there exists such p, € ZY .

Proof. The existence of p, € RY with (20) is equivalent to D(v*) N
D(y) # 0, where v¥ : V x V — R U {+oo} is defined by v#(u,v) =
—v(v,u) (u,v € V). Definen : VxV — RU {400} by n(u,v) =
min{y(u,v), v*(u,v)} (u,v € V). By Theorem 3.26 (ii), it suffices to show
that G, has no negative cycle. Suppose, to the contrary, that {vy,vs,---, v} C
V (h > 1) forms a negative cycle. Since v and v* satisfy the triangle in-
equality, we may assume that h = 2k (k > 1) and

N(v2i-1,v2) = Y(V2i—1,V2i), N(V2i,V2i41) = —V(V2i41,02:) (1 =1,2,---,k),

S k k
where vory1 = vi. This implies Y 7, v(vaiy1,v2:) > D Y(v2i-1,02i), &
contradiction. The integrality assertion follows from the argument above
and Lemma 3.21 (v). 1

REMARK 3.29. The assumption in Theorem 3.28 cannot be replaced by
the weaker condition

v(u,v) < y(u,v) (Vu,v € V),

as shown in the following example.
Put V ={a,b,c,d}, and definey: VxV - R, v: V xV — R as follow:

'y|abcd 1/|a b ¢ d
al0 0 1 -1 al0 0 -1 -1
bj2 0 1 1 b| 0 0 -1 -1
c|ll =10 0 c|-1 -1 0 0
dj1 1 2 0 dl-1 -1 0 0
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where it reads as y(a,d) = —1, v(b,a) = 2, etc. We can easily check that
v, —v € T and v(u,v) < v(u,v) (Yu,v € V). However, there is no p, € RV
satisfying (20). Suppose, to the contrary, that such p. € RY exists. Then,
we have

y2 (CL) — D« (b) < min{’)’(ba (l), _V(aa b)} - 07
p*(b) — D« (C) < min{’Y(ca b): _V(b: C)} = _17
P«(¢) = p«(d) < min{y(d, c), —v(c,d)} =0,
P«(d) — p«(a) < min{y(a,d), —v(d,a)} = —1.

Addition of these inequalities yields 0 < —2, a contradiction. Note that
the assumption of Theorem 3.28 is not satisfied since v(a, b) +v(c,d) =0 >
-2 :’7(67 b) +7(a7 d) I

The latter part of the following theorem is already shown in [34, Theorem
5.6].

THEOREM 3.30. Let D{,D5 € Ly. If Dy N Dy = 0, then there exists
7. € {0,£1}V such that

inf <p7 .’L'*> — sup <p7 .’L'*> >0. (21)
peDy pED,

Moreover, if D1 and Dy are integral polyhedra, i.e., D; = D;NZV (i =
1,2), then “> 07 in (21) can be replaced by “> 1.

Proof. Put y; = vp, (i =1,2). Since D(y1) ND(y2) = @, it follows from
Theorem 3.28 that there exists a sequence of distinct elements {v;}2%, CV
(k > 1) such that Zle 71(1)21',1,1}21') + Zle 72(U2i,1)2,'+1) < 0, where
vokr1 = vi. Let . € {0,£1}V be a vector such that z.(ve;) = —1,
Zy(Vo;_1)=1(=1,---,k), and z,(w) = 0 otherwise. Then, we have

inf (p,x«) — sup (p, T«)

pED1 pED-

= inf Z{p v2i—1) — p(va;)} — sup Z{P v2i41) — p(v2:) }

peDy < pED2 ;=

v

k
- Z 71 (v2i—1,v25) — ZWz(Uzi,Uzz'H) > 0.
i i—1

The integrality assertion is obvious from the inequality above. |
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3.3.2. LA-convex polyhedra

Due to the property (LS2), an L-convex polyhedron loses no information
when restricted to a hyperplane {p € RV | p(v) = 0} for any v € V. We
call a polyhedron P C RY Lf-convex if the set P C RY defined by

P={(\,p+Al)|peP, e R}

is an L-convex polyhedron, where V = {vg} U V. We see that Li-convex

polyhedra are essentially the same as L-convex polyhedra, while the class

of Li-convex polyhedra properly contains that of L-convex polyhedra.
Intervals are the only polyhedra that are both Lf- and M!-convex.

TueOREM 3.31 (cf. [38, Lemma 5.7]). A polyhedron S C RV is both
polyhedral Mb-convex and polyhedral L*-convez if and only if S is an inter-

val, i.e., it is represented as S = [a,b] for some a : V — RU {—o0} and
b:V - RU{+o0} with a(v) < b(v) (veV).

Proof. Consider the polyhedral description of S in terms of linear in-
equalities of the form (p,z) < a. For an Li-convex set, p = Xy — Xu OF P =
4+, for some elements u,v € V by Theorem 3.23 (i), while for MP-convex

set, p = £xx for some subset X C V by (13). Therefore, S is an interval. |

REMARK 3.32. There exists no polyhedron which is both M-convex and
L-convex, i.e., Mg N Ly = @ (Proof: If S € My N Ly, then Theorem 3.2
implies (V') = y(V) for any z,y € S, whereas (LS2) implies that z+A1 € S
forany A€ R.) 1|

4. POLYHEDRAL M-CONVEX AND L-CONVEX
FUNCTIONS
4.1. Review of Fundamental Results on Polyhedral Convex
Functions

This section is devoted to a summary of the relevant results on polyhedral
convex functions. See [41, 44] for more accounts.

Let f : RV — R U{%oc} be a function. The epigraph of f, denoted by
epif, is the set

epif = {(z,a) [s € RV, a € R, a > f(x)} (CRY x R).
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The effective domain of f, denoted by dom f, is the set
dom f = {z € RV | —00 < f(x) < +00}.

We call f convez if epif is a convex set in RY x R. A function f is called
concave if —f is convex. When f > —o0, f is convex if and only if

flaz+ (1 -a)y) < af(z) + (1 -a)f(y) (Vz,y €RY, Va €[0,1]).

A convex function is said to be polyhedral if its epigraph is polyhedral.
Let f : RV — RU{xo0}. The (convez) conjugate f* : RV — RU{+oc}
of f is defined by

o) = s;gvup, z)— f@)} (peRY). (22)
THEOREM 4.1 ([41, Theorem 19.2]).

(i) For a polyhedral convex function f : RY — R U {+oo} with dom f # 0),
its conjugate function f* is also polyhedral conver with dom f® # 0 and
f* > —o0, and f** = f.
(ii) The mapping f — f* induces a symmetric one-to-one correspondence
in the class of polyhedral convex functions f : RV — R U {+oo} with
dom f # 0.

A function f : RY — R U {+o0} is called positively homogeneous if
f(axz) = af(z) for any z € RY and a > 0. Note that f(0) = 0 if
dom f # 0.

THEOREM 4.2 ([41, Corollary 4.7.1]). Iff : RY — RU{+o0} is a pos-
itively homogeneous convex function, then f(Zle a;z;) < Zle a; f(x;)
for any z; e RY and a; >0 (i =1,--- k).

For any nonempty set S C RV, we define the support function 0% : RY —
R U {+o0} of S by

d5(p) = SIéI;(p, z)  (peRY). (23)

For any positively homogeneous function f : RV — R U {+o00}, we define
the set Sy C RV by

Sy ={z eRY [ (p,2) < f(p) (¥pe RY)}. (24)
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THEOREM 4.3 ([41, Section 13]).
(i) For any nonempty polyhedron S (C RY), 8% is a positively homogeneous
polyhedral convex function with dom s # 0, and S = Sss, -
(ii) For any positively homogeneous polyhedral convez function f : RV —
R U {+o00} with dom f # 0, Sy is a nonempty polyhedron, and f = a3, -
(iii) The mappings S — 65 and f — Sy provide a one-to-one correspon-
dence between nonempty polyhedra S (C RY) and positively homogeneous
polyhedral convex functions f : RV — R U {+oo} with dom f # (), and are
the inverse of each other.

Let f : RV - RU{£o0}. For any z € dom f and y € RY, we define
the (one-sided) directional derivative of f at x with respect to y by

ooy — i L&+ oY) — f(x)
f(x7y)_£1i% a

if the limit exists. Note that if f is polyhedral convex, then f'(z;y) is well-
defined for any z € dom f and y € RY by f'(z;9) = {f(z +ay) — f(z)}/a
with a sufficiently small @ > 0. The subdifferential 0f(x) of f at z is
defined by

df(z) ={p e RV | f(y) > f(z) + (p,y — z) (Vy € R")},
and each vector in df(x) is called a subgradient of f at x.

THEOREM 4.4 ([41, Theorem 23.10]). Let f : RY — R U {+o0} be a
polyhedral convex function with dom f # 0, and x € dom f. Then, df(x) is
a nonempty polyhedral conver set, and f'(x;-) is a positively homogeneous
polyhedral convex function such that dom f'(z;-) # 0, f'(z;-) > —o0, and

f(@;-) = 55,!(@-

Let f: RV — R U {+o00o} be any function. We denote by argmin f the
set of minimizers of f, i.e.,

argmin f = {z € RV | f(z) < f(y) (Vy e RV)}.

Note that argmin f can be empty. For any p € RV, the function f[p] :
RY — RU {400} is defined by

fl(@) = f(z) + {p,z)  (z€RY). (25)
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TueOREM 4.5 ([41, Theorem 23.5)). Let f : RV — R U {+c} be a
polyhedral convex function with dom f # (. For any x € RY and p e RV,
we have

p € 0f(z) <= =z € argmin f[—p]
<~ z€df'(p) < p€ argmin f*[—z].

For f; : RV — RU {40} (i = 1,2), the infimum convolution (or simply
the convolution) fiOfs : RV — R U {#o0} is defined by

r1,T2 € RV,
1 +To=2x

(i02)(x) = inf {f1 (22) + folzz)

} (x € RY). (26)
It is easy to verify that if f10f; does not take the value —oo, then

dom (fl DfQ) = dom f; + dom f.

THEOREM 4.6 ([41, Sections 16, 19, and 20]). Let fi : RV — R U
{+00} (i = 1,2) be polyhedral convex functions with dom f; # 0. Then,
f1Of5 is also polyhedral conver and

(A0f) = fl+ 13

Moreover, if dom f; Ndom fs # @ then it holds that

(fi+f2)* = f10Of3.

We consider the special case of one-dimensional functions. A function
f:R > RU{+o0} is called piecewise-linear if dom f is a closed set and
can be divided into a finite number of subintervals on each of which f
is linear. We denote by C! the class of piecewise-linear convex functions
(cf. (5)). Note that a piecewise-linear convex function is nothing but a
one-dimensional polyhedral convex function. For f : R - R U {0}
and x € dom f, we denote f}(z) = f'(z;1), fL(x) = —f'(=;-1). If f is
piecewise-linear, then the value f! (z) and f’ (z) are well-defined for any
z € dom f and

lim fily) = lim fLy) = fi (), lim i) = lim L) = ().
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4.2. Polyhedral M-convex Functions

A polyhedral convex function f : RV — R U {+o0} is called M-conver if
dom f # () and f satisfies (M-EXC):

(M-EXC) Vz,y € dom f, Yu € supp™(z —y), v € supp~ (z —y), Jap > 0
such that

@)+ 1(y) 2 f(z = alxu = x0)) + fy + alxu = x0)) (0 <Va<ag).

We denote
M = {f| f:RY - RU {+c}, polyhedral M-convex},
oM = {f]| f:RY = RU {+o0}, positively homogeneous

polyhedral M-convex}.

It may be obvious from the definition that polyhedral M-convex functions
are a quantitative extension of M-convex polyhedra.

THEOREM 4.7.
(i) For a function f : RV — {0,+00}, we have f € M <= dom f € M,.
(if) For f € M, we have dom f € My.

4.2.1.  Axioms for Polyhedral M-conver Functions

We consider two slightly different exchange axioms, where the former is
weaker and the latter is stronger than (M-EXC).

(M-EXCy,) Vz,y € dom f, Vu € supp™t (z—y), Jv € supp™ (z —y), Ja > 0
such that

f(.TL‘) + f(y) > f(.’E - a(Xu - Xv)) + f(y + a(Xu - XU))'

(M-EXC;) Vz,y € dom f, Yu € supp™ (z — y), Jv € supp™ (z — y) such
that

f@) + fy) > fl@ = alxa — x0)) + f(y + alXu — X))
for any a € R with 0 < a < {z(u) — y(u)}/2k, where k = |supp™ (z — y)|-

THEOREM 4.8. For a polyhedral convex function f : RV — R U {+o00}
with dom f # 0, (M-EXC) <= (M-EXCy).
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Proof. We show (M-EXC,,) = (M-EXC) only. Let z,y € dom f and
u € supp ™ (z — y). Then, there exist v € supp ™ (z — y), ap > 0 such that

f@) + fy) > f(x — alxe — Xx0)) + Fly + alxu — xv)) (27)

for @ = ap. The convexity of f implies (27) for any a € [0, ap]. 1

LEMMA 4.9. Let f € M, z,y € dom f be distinct vectors, u € supp™ (z—
y), and supp™ (z —y) = {v1,v2, -, v} (k= |supp™ (z — y)|). Then, there
exist sequences {z;}¥_o, {yi}h o (C dom f) and {a;}f_, (C R,) satisfying
Ele a; = {z(u) — y(u)}/2 and the following conditions:

To =%, Yo=Y,
Ti = Tij—1 — ai(Xu —Xm)a Yi = Yi—1 +Oéi(Xu —Xv,-) (i = 1;"';’“): (28)
f@i1) + flyi—1) > f(@:) + f(yi) (=1, k). (29)

Proof. Put zg =z, yo =y. Fori =1,2,---,k, we define a; € R and
z;,y; € RV iteratively by the following equations:

a; = sup{a € Ry | @ < min{z;—1(u) — yi-1(w), yi-1(vi) — zi-1(vi)}/2,
fwicn — alXu — Xv:)) + f(yic1 + a(Xu — Xu:))
< f(@im1) + f(yi-1)},
i =1 — @ (Xu — Xo:)y  Yi = Yio1 + @i(Xu — Xo:)-

Then, the sequences {z;}¥_,, {yi}% ,, and {a;}F_, satisfy the conditions
(28) and (29). In the following, we show Ele a; = {z(u) —y(u)}/2.

Assume, to the contrary, that Ele a; < {z(u) —y(uw)}/2. Since u €
suppT (zx — k), there exist some v; € supp~ (zx — yx) C supp ™~ (z —y) and
ag > 0 such that

Flze) + flyr) > flrr — alxu — Xw:)) + Flye + a(xu — Xx0:))  (30)

for any a € [0,ap]. Here, v; # v holds by the choice of z and yi. By
Theorem 4.14 to be shown later, we have

{7 (@i — alxu —xw)) = f(@0)} + {7 Wi + alxu — x0:)) = f(93)}
< {F @@k = alxu = Xoi) = f20)} +{f (r + a(xw = xw)) = Flur)} <O

for any a € [0, ag], where the second inequality is by (30). This contradicts
the definitions of z; and y;. |
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THEOREM 4.10. For a polyhedral convex function f : RV — RU {+o0}
with dom f # 0, (M-EXC) <= (M-EXC;).

Proof. Tt suffices to prove (M-EXC) = (M-EXC;). Assume (M-EXC)
for f. Let z,y € dom f be distinct vectors, and v € suppt(z — v).
By Lemma 4.9, there exist sequences {z;}}_,, {y:}f, (C dom f) and

{ai}h, (C Ry) satisfying YF ; a; = {z(u) — y(u)}/2, (28), and (29).
Let i, be an integer with 1 <14, < k such that

i, = max a; (> {w(u) — y(w)}/20).

From Theorem 4.14 to be shown later, we obtain the inequalities:

{f@—ai,(Xu = Xv:.)) = @)} + {f(y + @i, (Xu — X0:,)) = F@)}
< {f@i) = f@i -0} +{f (i) — fyi.-1)} <0,

where the second inequality is by (29). From the convexity of f follows

f(l') + f(y) > f($ - a(Xu — Xvs, )) + f(y + a(Xu — Xvs, )) (\7’a € [Ouai*])'
|

We can rewrite (M-EXC) in terms of directional derivatives. For a
polyhedral convex function f : RY — R U {+oc} with dom f # § and
z € dom f, define f'(z;-,-) : V xV — RU{+o0} by

flav,u) = fl@5x0 —xu) (w0 €V).
Note that f(z — a(xu — xv)) — f(z) = af'(z;v,u) for sufficiently small
a > 0. We consider (M-EXC'):

(M-EXC') Vz,y € dom f, Yu € supp™(z — y), v € supp™(z — y) such
that

fl(mavau) + f'(y,u,v) <0.

THEOREM 4.11. For a polyhedral convex function f : RV — RU {+oo}
with dom f # 0, (M-EXC) < (M-EXC').

4.2.2.  Fundamental Properties of Polyhedral M-conver Functions

In this section, we show various properties of polyhedral M-convex func-
tions.



POLYHEDRAL M/L-CONVEX FUNCTIONS 37

Global optimality of a polyhedral M-convex function is characterized by
local optimality.

THEOREM 4.12. Let f € M and x € dom f. Then, f(z) < f(y) (Vy €
RY) < f'(z;v,u) >0 (Yu,v e V).

Proof. We show the “<==” direction only. Assume, to the contrary, that
f(zo) < f(z) holds for some 7o € RV. Put S = {y € RV | f(y) < f(20)}-
Let z, € S be a vector such that ||z, —z|[1 = infyes ||y —2[|;. By (M-EXC)
applied to x, z, and some u € supp™t (z—x,), there exists v € supp~ (z—x,)
and a sufficiently small a > 0 such that

f(.’L'*) - f(.TC* + a(Xu - Xv)) f(.CL' - a(Xu - Xv)) - f(.CL')
(e

2
> af'(zv,u) = 0.

Hence, we have f(z. + a(xu — Xv)) < f(zx) < f(xo), which contra-
dicts the choice of z, since ||(z« + a(xuw — Xv)) — Z|1 = |2+ — 2|1 — 2. |

A polyhedral M-convex function has supermodularity when projected
onto the hyperplane {z € RV | z(wo) = 0} (wo € V), as stated in Theorem
4.14.

LEMMA 4.13. Let f € M, wo €V, andx € RY. Then, for anyu,v € V
and A, u > 0 we have

f@+ Axu — Xwo)) + f(@+ pxe — Xwo))
< fl@) + flz+ AMxu — Xwo) + pxo — Xwo))' (31)

Proof. Fix u,v € V and A\,u > 0. For X, u' € R, we denote
(N, 1) = 24N (Xu—Xwe ) ' (Xv—Xw, ). We may assume that (0, 0), z(\, u) €
dom f. Then, it follows from Theorem 3.9 that

z(X,0), (X, pu) € dom f (0 < VXN < )).
Define the functions fi, f2 : [0,A] = R by
X)) =f@(X,0), f2X)=flX,p)  (0<N <)

Let v be any value with 0 < v < A. For any g € [0,7v), (M-EXC')
yields (f1)%.(8) — (f2)_(v) < 0 since supp™ (z(v, 4) — #(8,0)) = {u,v} and
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supp ™ (z(7, 1) — 2(B,0)) = {wo}. This implies

(fo=FA)_(y) = () () = (f1)_ () = (f2)_(7) — gg(fl)i(ﬂ) >0

for any v with 0 < v < A. Therefore, the piecewise-linear function fo — f;
is nondecreasing on [0, A], from which we have

fla(A ) = F(=(A,0) = fa(N) - f1(¥)
> f2(0) = f1(0) = f(x(0,p)) — f((0,0)),

i.e., the inequality (31) holds. 1|

THEOREM 4.14. Let f € M, wg € V, and x € RY. For any X,Y C
V\{wo} with XNY =0 and Ay >0 (w € X UY), we have

f(x+ Z /\w(Xw _Xwo)) +f($+ Z /\w(Xw _X’wo))

weX weyY

< f(m)+f($+ Z /\w(Xw_Xwo))- (32)

weEXUY

Proof. We show the inequality (32) by induction on the cardinality of
the set X UY. It suffices to consider the case when X # @ and Y # 0.
Note that the case when |X| = |Y| = 1 is already shown in Lemma 4.13.
Therefore, we may assume that |Y| > 2. Let v € Y. We assume that
z € domf and z + > vy Aw(Xw — Xw,) € dom f. Then, we have
' = x4+ M\(Xv — Xw,) € dom f by Theorem 3.9. Hence, the inductive
assumption yields

f@+ 3 Mltw = xun)) — £(@)

weX
< flet+ D) Al = Xwo) = F@ + X (Xo — Xuo))
weXU{v}
Sf(m_'_ Z /\w(Xw_Xwo '77+ZA Xwo)
weXUY weyY

Directional derivative functions and subdifferentials of a polyhedral M-
convex function have nice structures such as M/L-convexity, and they can
be explicitly described by certain distance functions with triangle inequality
(cf. Theorem 4.15 (i)).
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For any distance function v : V x V — R U {+oc} (i.e., y(v,v) = 0 for
all v € V), we define f, : RV — RU {00} by

Auv(Xv — Xu) = <,
fr(x) Zinf{ Z AuvY(u,v) u,'uzeV o =) = } (z e RY). (33)

u,veV Aw >0 (u,v € V)

THEOREM 4.15. Let f € M and x € dom f.
(i) The function v, : V xV = R U {+oo} defined by

'735(“)’”) = fl(x;’l),’u,) (u,v € V) (34)

satisfies vz (v,v) = 0 (Vv € V) and the triangle inequality (19), i.e., v, € T.
(i) We have f'(x;-) = f,, and f'(z;-) € oM.

Proof. (i): For u,v,w € V and a sufficiently small a > 0, we have

e (u,v) + aye (v, w)
= {f@+alxo —xu)) = F(@)} +{f(z + alxw — x»)) — f(2)}
z f@+alxe —xu) — f(@) = are(u,w),
where the inequality is by Lemma 4.13. Obviously, v, is a distance function.

(ii) The proof is postponed after Theorem 4.19. |

L-convexity appears in subdifferentials of a polyhedral M-convex func-
tion.

THEOREM 4.16. Let f € M and z € dom f.
(i) 0f(z) € Lo and Of(x) is represented as

8f(z) = D(vz) = {p € RV | p(v) = p(u) < f'(z;0,u) (u,v € V)}, (35)

where v, : V XV = RU {400} is given by (34).
(ii) For anyy € RY we have f(y)—f(x) > sup,epsz) (0, y—2) = fr. (y—2).

Proof. The equation (35) follows from Theorems 4.5 and 4.12. The L-
convexity of f () is immediate from (35) and Theorem 4.15 (i). The claim

(ii) is immediate from (i) and the linear programming duality. |
The next theorem shows that each face of the epigraph of a polyhedral

M-convex function is an M-convex polyhedron when it is projected to RV.
The proof is obvious and therefore omitted.
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THEOREM 4.17. For f € M and p € RV, we have argmin f[—p] € M,
if inf f[—p] > —o0.

The class of polyhedral M-convex functions is closed under various fun-
damental operations. Let f : RV — R U {400} be a function. For any
subset U C V, we define fyy : RV — RU {+o00} by

Jfu(y) = f(y,00\v) (y e RY). (36)

THEOREM 4.18. Let f, f1, f € M.
(1) For p € RY, the function f[-p]: RV — R U {+oc} given by (25) is
polyhedral M-convex.
(2) For a € RY and v > 0, the functions v - f(a — z) and v - f(a + z) are
polyhedral M-converz in x.
(3) For any U C V, the function fy : RV — R U {+oc} is polyhedral
M-convez if dom fyr # 0.
(4) For @, € C' (v € V), the function f : RV — R U {+o0} defined by

f@) = f@)+ Y pu(z()) (z€RY)

veEV
is polyhedral M-convex if dom f # 0.

(5) For anya:V — RU{—00} and b: V — RU {+oo} with a < b, the
restriction fio 5 : RV = RU {+o0} of f defined by

_ [ f(@) (z€ab)),
f[a,b](x) = { +o0 (z ¢ [a, b]) (37)
is polyhedral M-convez if dom f N [a,b] # 0.

(6) The convolution fiOfs : RY — RU{£oo} defined by (26) is polyhedral
M-convez, provided (f10f2)(zo) is finite for some zo € RY.

(7) For U C V, the function f : R x RV — RU{£o0} defined by

f(o,y) = nf{f(2) | x(v) =y(v) (veU), yo=2(V\U)}  (38)

is polyhedral M-convez if f(yb,y') is finite (i.e., —o0 < f(yb,y') < +00)
for some (yh,y') € R x RY.

Proof. (1) to (5) are easy to prove. The proofs of (6) and (7) are given in
Sections 5 and 7.3, respectively. |
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A more general and stronger transformation, called “network induction,”
is explained in Section 7.3.

4.2.8. Positively Homogeneous Polyhedral M-convex Functions

This section clarifies the relationship of positively homogeneous polyhe-
dral M-convex functions to distance functions with triangle inequalities,
and also to L-convex polyhedra.

For a positively homogeneous polyhedral convex function f : RV —
R U {+00} with 0 € dom f, define 77 : V x V — R U {400} by

(W, 0) = f(050,u) (= f(xo — X)) (w,w€V). (39)
Recall the definition of f, in (33).

THEOREM 4.19.
(i) For f € oM, we have vy € T and f,;, = f.
(ii) For v € T, we have f, € oM and vy, =".
(i) The mappings f — ¢ (f € oM) and v — f, (v € T) provide a
one-to-one correspondence between oM and T, and are the inverse of each
other.

Proof. (i): By Theorem 4.15 (i) and Theorem 4.16 (ii), we have v; € T
and f > f,,. For any z € RV and {\yy}uvev satisfying > uwey Auw(Xo —
Xu) = and Ay > 0 (u,v € V), Theorem 4.2 implies that

Z /\uv'Yf (u,v) Z Awv f(Xv — Xu)

u,veV u,veV

I( Z Aww(Xo — Xu)) = f(=).

u,veV

v

Hence, we have f,, = f.

(ii): Polyhedral M-convexity of f, can be shown as a special case of
Example 2.4. To be more precise, we have f,(z) = f(z) (Vz € RY) for the
function f in Example 2.4, where T =V, A = {(u,v) | u,v € V, u # v},
and

fun©={ 1L E20 (@ven.

For any u,v € V, we have ;. (u,v) = f,(Xv — Xu), Which is equal to the
shortest path distance from u to v in the directed graph G = (V, A), where
A =V xV and the length of an arc (u,v) € A is given by v(u,v). Since
v € T, it holds 7z, (u,v) = v(u,v) (Yu,v € V).
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(iii): Clear from (i) and (ii). |

We now prove the polyhedral M-convexity of the directional derivative
function f'(z;-).

Proof of Theorem 4.15 (ii) By Theorems 4.15 (i) and 4.19, it suffices
to show f'(z;-) = f,,, which can be done in the same way as the proof of
Theorem 4.19 (i). |

As immediate consequences of Theorems 3.23, 4.3, and 4.19, we obtain
a one-to-one correspondence between positively homogeneous polyhedral
M-convex functions and L-convex polyhedra. Recall the notation Sy and
0% in (23) and (24).

THEOREM 4.20.
(i) For f € oM, we have Sy € Lo and 65, = f.
(ii) For D € Lo, we have 07, € oM and Ssx = D.
(iii) The mappings f — Sy (f € oM) and D — 6}, (D € Lg) provide
a one-to-one correspondence between oM and Ly, are the inverse of each
other.

4.2.4. Polyhedral M*-convex Functions

We introduce a variant of polyhedral M-convex functions, called polyhe-
dral MP-convex functions. From Theorem 3.2 and 4.7 (ii), we see that the
effective domain of a polyhedral M-convex function is contained in a hy-
perplane {z € RV | z(V) = r} for some r € R. Therefore, no information
is lost when a polyhedral M-convex function is projected onto a (|V|—1)-
dimensional space. A function f : RV — R U {+oo} is called polyhedral
Mt -conwez if the function f: RV — R U {400} defined by

flane) = { 1 {0~ 720 (o) e RD)

is a polyhedral M-convex function, where V = {vo} U V. Polyhedral M-
convex functions are essentially equivalent to polyhedral M-convex func-
tions, whereas the class of polyhedral Mf-convex functions properly con-
tains that of polyhedral M-convex functions. M?-convexity was originally
introduced in [37] as a concept for functions defined over the integer lattice
(see also [18]).

Polyhedral Mf-convex functions can be characterized by the following
exchange property (cf. [37]):
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(M!-EXC) Vz,y € dom f, Vu € suppt(z — y), either (i) or (ii) (or both)
holds:
(i) Jv € supp~ (z — y), Jap > 0 such that

f@)+ f(y) > flz —alxu — xv) + ¥+ alxu —Xv)) (0<Va<a),

(ii) Jap > 0 such that

f@) + f(y) > f(z —axu) + f(y + axu) (0 <Va<ag).

THEOREM 4.21. Let f : RV — RU{+o00} be a polyhedral convex function
with dom f # 0. Then, f is M*-convex if and only if it satisfies (M8-EXC).

Proof. Proof is given in Section 5. |

EXAMPLE 4.22 (separable-convex functions). Let A C 2V be a lami-
nar family, i.e., A is a family of subsets of V such that for any X, Y € A
at least one of X \ Y, Y \ X and X NY is empty. For fx € C! (X € A),
the function f4 : RV — RU{+o0} given by

fa@) =Y fx@X)) (zeRY)

XeA

is polyhedral M?-convex if dom f4 #  [6]. This can be proved similarly to
Example 2.4.

Let B C RY be an MP-convex polyhedron. For fy € C' and f, € C!
(v € V), the function f: RY — R U {400} defined by

foz(V) + > fu(z(v)) (z € B),
f(x) = veEV
+00 (z ¢ B)

is polyhedral Mf-convex if dom f # 0. |

Another class of polyhedral M-convex functions arises from the mini-
mum cost flow problem, as in Example 2.4.

From the definition of polyhedral MP-convex functions, every property
of polyhedral M-convex functions can be restated in terms of polyhedral
ME-convex functions, and vice versa. We present some properties below,
which seem more natural when restated in terms of polyhedral M®-convex
functions.
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For any function f: RV — RU{+oc} and any subset U C V, we define
the projection fU : RV — R U {£o0} of f to U as

fPy)= inf f(y,2) (y€R"). (40)

zERV\U

THEOREM 4.23. For any polyhedral M -convex function f : RV — R U
{+o00} and U CV, fU is polyhedral M*-convex if fU(x¢) is finite for some
Xo € RV.

Proof. Obvious from Theorem 4.18 (7). 1

THEOREM 4.24. If f : RV — R U {400} is polyhedral M°-convez, then
it satisfies the supermodular inequality:

f@)+fy) < f@ny)+flzvy)  (Yz,y eRY).

Proof. Immediate from Theorem 4.14. |

4.3. Polyhedral L-convex Functions
A polyhedral convex function g : RV — RU{+oo} is said to be L-convez
if domg # @ and g satisfies (LF1) and (LF2):
(LF1) g(p)+9(a) 2 9(pAa) +9(pVa) (Vp,q€ domyg),
(LF2) 3r € R such that g(p+ A1) = g(p) + \r (Vp € domg, VA € R).
We denote

L
ol

{g|g:RY = RU {+00}, polyhedral L-convex},
{g9]9:RY = RU {400}, positively homogeneous
polyhedral L-convex}.

As is obvious from the definition, polyhedral L-convex functions are a quan-
titative generalization of L-convex polyhedra.

THEOREM 4.25.
(i) For a function g: RV — {0,+}, g € L <= domg € L.
(ii) For g € L, we have dom g € Lo.

4.8.1.  Axioms for Polyhedral L-conver Functions
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We first show that (LF1) and (LF2) are equivalent to local properties
(LFllOC) and (LFZ]OC):

(LF110c) Vp € dom g, e > 0 such that
9(q) +9(q2) > g(q1 Ag2) + 9(a1 V ¢2)  (Va1, G2 € Noo(p, €)).
(LF2)oc) Vp € dom g, 3= > 0, Ir € R such that

¢ €Neo(p,€), ¢+ A1 € No(p, ) (A € R) = g(g+ A1) = g(q) + M.

THEOREM 4.26. Letg: RY — RU{+oc} be a polyhedral convez function
with dom g # 0. Then,
(i) (LF1) <= (LF1j0c). (i) (LF2) < (LF2i0c)-

Proof. (i): We show (LF1lj.) = (LF1) only. Assume (LF1j,) for g.
Then, Theorem 3.20 (i) implies (LS1) for dom g. For p € dom g, we denote
by (p) the value € in (LF1y,.) associated with p.

Let p,p’ € domg, and recall the definition of Box[p,p'] in Section 3.1.
Since Box[p, p'|Ndom g is a compact set, there exist g1, g2, - - -, gm € Box[p, p']IN
dom g (m > 1) such that Box[p, p')Ndom g C J;~; Noo(gi,(g;)). We show
the submodular inequality

g) +9@") > glpAp) +9(pVD) (41)

by induction on the integer m. We may assume m > 2, since otherwise
(41) holds immediately.

For A, € [0,1], put p(A\, 1) = p+ M (pVP') —p} +p{(pAp') —p}. Then,
for w € V we have

(1= Np(w) + Ap'(w) (w € suppt (p' — p)),
(A, p)(w) = . 1(9(1;1) (w € V' \supp(p' —p)), (42)

+ pp'(w) (w € supp™ (p' —p))-
Furthermore, for any A, u € [0, 1] we have
p(A, 1) € conv{p, p', pAp, pVp'} C Box[p,p']Ndomg.
We may assume that p € Noo(q1,€(q1)). Put p. = p(As, pix), where

A = sup{A € [0,1] | p(A, 0) € Noo(q1,6(q1))}
s = sup{u € [07 ]-] | (0 /j’) € No (q17 (q ))}
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Then, we have p, € Noo(g1,¢(q1)), implying

g) +9(ps) > glpAp) + 9PV pe)- (43)

In the following, we assume A, < 1 and p. < 1, since the other cases can
be shown similarly and more easily. Then, we have

m
Box[p V p.,p' Vp.]Ndomg C | Noo(2i€(q:)),
=2

m
Box[p A pa,p' Ap.]Ndomg C | | Noo(g:,6(i)),
=2

Box[p.,p'] N domg C | J Noo (g, €(a:))-
=2

Hence, the inductive hypothesis implies that

g V) +9@ Vp.) > gp.) +9pVD),
g AD) + 9@ Ape) > gpADP') + 9(ps)s
g(p«) +9(@') > g(p« AP') + g(p« V '),

where we note that

(PVp) APV Pps) = P, (pVp) V(P Vp.) =pVy,
(PAP) AN Ap) =pAp, (PADP)V (P Aps) = pa

Combining the above inequalities with (43), we obtain the submodular
inequality (41).

(ii) We show (LF2i5c) = (LF2) only. Assume (LF2i,.) for g. Then, dom g
satisfies (1.S2) by Theorem 3.20 (ii). Let z; € RV and ; ER (i = 1,---, k)
be such that g(p) = maxi<;<x{(p, ;) + A} (p € domg). As is shown later,
the value (1, z;) is the same for all . Thus, g satisfies (LF2).

We now prove that (1,z;) = (1, ;) for any ¢,j. Let py be any vector in
dom g, and define ¢ : R — R by ¥(u) = g(po + p1) (u € R). Then, ¢ is
piecewise-linear convex. Moreover, we have 9/, (u4) = max;<;<x(1, z;) for
a sufficiently large value of py, and ¢/, (u—) = mini<;<x(1, ;) for a suffi-
ciently small value of u_. By (LF2j,.), we see that # is a linear function.

Hence, we have max; <ij<x (1, z;) = ¥ (u4) = ¥ (u—) = mini<i<p (1, 2:). |

THEOREM 4.27. Leta:V — RU{—ox} andb: V — RU{+o00} be such
that a < b. Also, let g: RV — RU{+o00} be a function with dom g = [a, b].
(i) g is submodular < for any p € RY, any u,v € V (u # v), we have

9@+ Axw) + 9+ pxo) = g(P) + 9P+ Axu +pxe) (YA, 1> 0). (44)
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(ii) The condition (44) can be replaced by the following:

9@+ Axu) + 9+ pxv) > 9@) + 9(p + Axu + pX0) (45)

for any X € [0,p1—1 —pi] and p € [0,pm—1 — Pm], where py > pa > -+ > pi
are distinct values in {p(v)}yev, and p(u) = p;, p(v) = P,

Proof. We show the “if” part of (i) only, and the other proofs are
omitted. Let p,q € [a,b]. Note that p A ¢,pV q € [a,b]. We show the
submodular inequality for p, ¢ by induction on the cardinality of supp(p—q)-
Without loss of generality, we assume |supp ™~ (p—¢)| > 2. Let v € supp ™ (p—
q), A = q(v) — p(v). Since p A ¢ + Ax» € [a,b], the inductive assumption
and (44) imply that

9) —g9g(PAg) > g+ Ixv) —9((PA Q) + Axv) > g(pV q) — 9(9).

4.8.2.  Fundamental Properties of Polyhedral L-conver Functions

In this section, we show various properties of polyhedral L-convex func-
tions.

LEMMA 4.28. Letg € L. Then, for any p,q € domg and A € R we have

9@ +9(@) > g((P+ A1) Ag) +g(pV (g — A1)). (46)

In particular, we have

9() +9(q) > 9(p+ Axx) + 9(q — Axx)
for any p,q € domg and XA € [0, \1 — \2], where
M =max{q(v) —pv)}, X ={veV|q(v)-pl) =N}, “7)
Yo = max {q(v) — p(0)}. (48)

veEV\X

Proof. The inequality (46) can be obtained as follows:

LHS of (46) = g(p) +g(g— A1) + Ar
> glpA(g— A1) +g(pV(g— A1)+ Ar
g{pA(g— A1)} + A1) + g(pV (g — A1)) = RHS of (46).
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The second inequality follows from this inequality since
pV{g—(u =M1} =p+Axx, @+ -N)Ag=g—-Ixx

for A€ [0,A1 — A2]. 1
Global optimality of a polyhedral L-convex function is characterized by

local optimality.

THEOREM 4.29. Letg € £ andp € domg. Then, g(p) < g(q) (Vg € RY)
<= ¢ (;xx) >0 (VX CV) and ¢'(p; xv) =r =0, where r is in (LF2).

Proof. We show the sufficiency by contradiction. Suppose that there
exists some ¢ € RY with g(¢) < g(p), and assume that ¢ minimizes the
number of distinct values in {p(v) — q(v)}yev of all such vectors. Define
A1, A2, and X (C V) by (47) and (48). Since ¢'(p; xv) = 7 = 0, we have
X #V and A2 > —c0. By Lemma 4.28, we obtain

9(p) +9(q) > glp+ (A1 — A2)xx) + 9(q — (A1 — A2)xx)- (49)

Put ¢ = ¢ — (A1 — X2)xx. Since ¢'(p;xx) > 0, (49) implies g(¢') <
9(¢) < g(p)- This inequality, however, is a contradiction since the number

of distinct values in {p(v)—¢'(v) },ev is less than that of {p(v)—q(v)}yev. |

Given a set function p: 2V — R U {+o0}, define g, : RV — RU {+o0}
by

k—1
90(p) = Z(pj - pir1)p(V;) + prp(Vi), (50)

where p1 > pa > --- > p; are distinct values in {p(v)}yev, and V; =
{veV|pw) >p;} (j=1,---,k). The function g, is called the Lovdsz
extension of p.

THEOREM 4.30. If p € S, then

9,(p) = sup (p,z)  (VpeRY).
z€B(p)

Proof. See [17]. |
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THEOREM 4.31 (Lovész [24]). Let p: 2V — RU {+oo} be a function
such that p(0) =0 and p(V) < +00. Then, p€ S < g, is convez.

Directional derivative functions and subdifferentials of a polyhedral L-
convex function have nice structures such as M/L-convexity, and they can
be explicitly described by certain submodular functions (cf. Theorem 4.32

(1))-

THEOREM 4.32. Let g € L and p € dom g.
(i) The function p, : 2V — R U {+o00} defined by

pp(X)=¢'(pxx) (XCV) (51)

satisfies pp(0) = 0, —co < pp(V) < 400, and the submodular inequality
(7), i.e., pp €S.
(i) We have g'(p;-) = g,, and g'(p;-) € oL.

Proof. We show ¢'(p;-) € oL only. The claim (i) is an immediate
corollary of (ii), and the equation g¢'(p;-) = g,, will be shown later in
Theorem 4.36 (i).

Let p € dom g. For q1,¢> € RY and a sufficiently small p > 0, we have

g'pa) +9' ;)

{9(p+ par) —g)}/ p+{9(p+ pa2) —9p)}/ 1

{9(p+ (a1 Ag2)) — 9P} +{9(p + (a1 V ¢2)) — 9(p)}/ 1
9P ANg) +9'(P5a Va2)

v

Hence, (LF1) holds for ¢'(p;-). (LF2) for ¢'(p;-) can be shown similarly. |
M-convexity appears in subdifferentials of a polyhedral L-convex func-

tion.

THEOREM 4.33. Let g € L and p € dom g.
(i) 0g9(p) € Mg and Og(p) is represented as

99(p) = Blpp)
= {zeRY [2(X) < g'(sxx) (VX C V), 2(V) = ¢'(B;xv)}, (52)
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where pp : 2 — RU {+oc} is defined by (51).
(ii) For any g € RV we have

gp+4q)—g) > sup (g, z) =g, ().
z€dg(p)

Proof. From Theorems 4.5 and 4.29 follows (52), which, together with
Theorem 4.32 (i), implies dg(p) € Mp. The claim (ii) is immediate from (i)

and Theorem 4.30. |

The next theorem shows that each face of the epigraph of a polyhedral
L-convex function is an L-convex polyhedron when it is projected to RV.
The proof is obvious and therefore omitted.

THEOREM 4.34. For g € L and x € RY, we have argmin g[—z] € Lo if
inf g[—2] > —o0.

The class of polyhedral L-convex functions is closed under various fun-
damental operations.

THEOREM 4.35. Let g,91,92 € L.
(1) For z € RY, the function g[-z] : RV — R U {400} given by (25) is
polyhedral L-convez.
(2) Fora e RY, B € R and v > 0, the function v - g(a + (p) is polyhedral
L-convez in p.
(3) For any U C V, the function gV : RV — R U {£oo} given by (40) is
polyhedral L-convez if gV (po) is finite for some po € RY .
(4) For ), € Ct (v € V), the function j: RV — R U {+oo} defined by

9(p) = Jnf A9@ + D bu(v) —q(v)} (peRY)
veV

is polyhedral L-convex if §(po) is finite for some po € RV.
(5) For any ~y € T, the restriction gn(,) : RY = RU{+00} of g defined by

_J9) (peD(),
9oy (P) = { 400 (p & D(7)).

is polyhedral L-convez if dom g N D(vy) # 0.
(6) g1 + g2 € L if domg; Ndom go # .

A more general and stronger transformation, called “network induction,”
is explained in Section 7.3.
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4.8.8. Positively Homogeneous Polyhedral L-conver Functions

This section clarifies the relationship of positively homogeneous poly-
hedral L-convex functions with submodular functions, and with M-convex
polyhedra.

For a positively homogeneous polyhedral convex function g : RV —
R U {+oo} with 0 € dom g, define a set function p, : 2V = R U {+oo} by

pe(X) =9¢'(0;xx) (=9(xx)) (X CV). (53)
Recall the definition of the Lovész extension g, in (50).

THEOREM 4.36.
(i) For g € oL, we have p, € S and g,, = g.
(ii) For p € S, we have g, € oL and p,, = p.
(iii) The mappings g — py (g € oL) and p — g, (p € S) provide a one-to-
one correspondence between oL and S, and are the inverse of each other.

Proof. (i): (LF1) for g yields p, € S. We see from Theorem 4.33 (ii)
that g > g, . On the other hand, from Theorem 4.2 follows

k—1
9p,(p) = Z(pj - pi+1)9(xy;) + Prg(xi)

k—1
> 9() (0 — pir1)xv; +Pexvi) = 9(p),
7j=1
where p; and V; (j =1,---,k) are defined as in the Lovész extension (50).

(ii): We show (LF1) for g, only. The other claims are obvious.

First assume that p < +00. By Theorem 4.27, it suffices to show that
(45) holds for any p € RY and u,v € V (u # v), where g = g,. Define
pj and V; (j =1,---,k) as in the Lovész extension (50). Let [, m be such
that p(u) = pi, p(v) = pm, and X € [0,p1—1 — pi], i € [0, pm—1 — Pm]. From
the definition of g, we have

9P+ M) = 95(p) + Mp(Vir U{u}) = p(Via)},
9o(p+ pixv) = 9p(P) + p{p(Vin—1 U{v}) = p(Vin—-1)}.
(Case 1: | # m): We may assume that [ < m. Then, (45) holds with
equality:

9p(P + AXu + 1X0)
= g,(p) + Mp(Vi.1 U{u}) — p(Vi—1)} + p{p(Vin—1 U {v}) — p(Vim—1)}
= go(P+ Axu) + 9o(P + pxv) — 9,(p)-
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(Case 2: | = m): We may assume that A\ > p. Then,

9o (P + Axu + X0)
= gp(p) + Mp(Vi-1 U{u}) — p(Vi-1)}
+ u{p(Vi=1 U {u,v}) — p(Vi—1 U {u})}
9p(P) + Mp(Vie1 U {u}) — p(Vi—1) } + p{p(Vi-1 U {v}) — p(Vi-1)}
9P+ Axu) + 9,(P + 1Xv) — 9, (D),

A

where the inequality is by the submodularity of p. Hence, (45) follows.
Next, we consider the general case where p may take the value +o00. Let
x € B(p). For each positive integer k, we define p;, : 2V — R by

pr(X) = min{p(X \Y) +2(¥) + kY ]} (X CV).

Note that py, is the submodular function associated with {y € B(p) | y(v) <
z(v) + k (v € V)}, which is a bounded M-convex polyhedron. Hence, we
have py < 400 and g,, satisfies (LF1). Since p(X) = limg_ o0 pr(X)
(VX C V), it holds that g,(p) = limk—c0 g, (p) (p € RY) and therefore g,
also satisfies (LF1).

(iii): Clear from (i) and (ii). |

From Theorem 4.36, we see that a polyhedral convex function is pos-
itively homogeneous polyhedral L-convex if and only if it is the Lovasz
extension of a submodular set function.

COROLLARY 4.37. oL ={g, | p € S}.

As immediate consequences of Theorems 3.3, 4.3, and 4.36, we obtain
a one-to-one correspondence between positively homogeneous polyhedral
L-convex functions and M-convex polyhedra. Recall the notation S, and
0% in (23) and (24).

THEOREM 4.38.
(i) For g € oL, we have Sy € Mg and 85, =g.
(ii) For B € Mo, we have 65 € oL and S5 = B.
(ii) The mappings g — Sy (g € oL) and B — 05 (B € M) provide
a one-to-one correspondence between oL and My, and are the inverse of
each other.

4.3.4. Polyhedral Lf-convex Functions
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Due to the property (LF2), a polyhedral L-convex function loses no infor-
mation when restricted to a hyperplane {p € R | p(v) = 0} for any v € V.
We call a polyhedral convex function g : R — RU {400} LA-conver if the
function §: RV — R U {400} defined by

3(o,p) = g(p—pol) ((po,p) € RY) (54)

is polyhedral L-convex, where V = {vo} UV. We see that polyhedral Lh-
convex functions are essentially the same as polyhedral L-convex functions,
while the class of polyhedral Lf-convex functions properly contains that of
polyhedral L-convex functions. The concept of Li-convexity was originally
introduced in [18] as a concept for functions defined over the integer lattice.

THEOREM 4.39. Letg:RY — RU{+o0} be a polyhedral convex function
with domg # 0. Then, g is Li-conver <= g satisfies (46) for any
p,q € domg and A > 0.

Proof. The “only if” part is clear from the definition of Li-convex
functions and Lemma 4.28. Hence, we show the “if” part only. It suffices
to show that § : RY — R U {+o0o} defined by (54) fulfills (LF1). Let
(po,p), (go,q) € domg, and without loss of generality assume pg > go.
Then,

g(p—pol) +9(q — qol)
9((® —pol + (po — q0)1) A (¢ — o))
+ 9((p—po1) V (¢ — g1 — (po — q0)1))
(PAg) —qol) +g((pV q) — pol)
(Po Ao, PN @)+ G(poV qo,pV q),

3o, p) + (g0, 9)

AV

9
9

where the inequality is by (46). Hence, (LF1) holds for §. 1|

EXAMPLE 4.40 (separable-convex functions). Let D C RY be an LE-
convex polyhedron. For any convex functions g, € C! (v € V), the function
g:RY = RU {+00} defined by

> 9(p) (pe D),
9(p) = vev

400 (p ¢ D)

is polyhedral Li-convex if dom g # 0. |
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From the definition of polyhedral Lf-convex functions, every property
of polyhedral L-convex functions can be restated in terms of polyhedral
Li-convex functions, and vice versa. We show two properties below, which
seem more natural when restated in terms of polyhedral Lf-convex func-
tions.

TueoreM 4.41. Let g : RV — R U {+oc} be a polyhedral L*-convex
function.
(i) Foranya:V - RU{-00} and b : V — R U {400}, the restriction
9lap) : RY = RU{+00} of g to [a,b] defined by (87) is polyhedral LA -convex
if dom g N [a,b] # 0.
(ii) For any U C V, the function gy : RV — R U {+oo} given by (36) is
polyhedral LF-conves if dom gy # 0.

Proof. (i) is immediate from the translation of Theorem 4.35 (5), and
(ii) is a corollary of (i). |

Examples 4.22 and 4.40 show that any separable-convex function is poly-
hedral M®-convex as well as polyhedral Li-convex. The converse is also true,
as shown in Theorem 4.42 below.

THEOREM 4.42 (cf. [38, Theorem 3.17]). Let f: RV — RU{+o0} be
a polyhedral convex function with dom f # (. Then, f € MNL if and only
if [ is separable-convex.

Proof. Let f € M N L. Theorems 3.31, 4.7 (ii), and 4.25 (ii) imply
that dom f is an interval, i.e., there exist a : V - RU{—oc} and b: V —
R U {400} with a(v) < b(v) (v € V) such that dom f = [a,b]. Similarly,
Theorems 3.31, 4.17, and 4.34 imply that argmin f[—p] is an interval for
any p € RY with inf f[—p] > —oco. Hence, for each v € V there exist a
sequence {a;(v)}r, C RU {00} (k, > 0) such that

e ao(v) =alw) <a;(v) <--- < ag,_1(w) < ag, (v) = bw),
e foranyi,=1,2,---,k, (v € V), the function f is linear over

the interval {z € RV | a;, 1(v) < z(v) < a;, (v) (v € V)}.

Due to these properties, we have f(z+ ax,) — f(z) = f(y + ax») — f(y)
for any z,y € dom f with z(v) = y(v) and any a € R.. For all v € V, put

fo(a) = f(@o + (@ = 20(v))xv) — f(20) (a €R),
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where g € dom f. Then, we have

f@) =Y fol@(®) + f(z0) (z€RY).

veV

Moreover, each f, is polyhedral convex since f itself is polyhedral convex.

Therefore, f is a separable-convex function. |

REMARK 4.43. There exists no function which is both polyhedral M-
convex and L-convex, i.e., M N L = (see Remark 3.32). |

5. CONJUGACY AND CHARACTERIZATIONS

Polyhedral M-convex and L-convex functions are conjugate to each other.

THEOREM 5.1. For f € M and g € L, we have f* € L and g* € M.
More specifically, the mappings f — f* (f € M) and g — ¢°* (g € L)
provide a one-to-one correspondence between M and L, and are the inverse
of each other.

Polyhedral M /L-convex functions are characterized by local polyhedral
structures such as directional derivative functions, subdifferentials, and the
sets of minimizers.

THEOREM 5.2. Let f: RY = RU{+0c} be a polyhedral convex function
with dom f # 0. Then,

i) fem
< (ii) f'(z;:) € oM (Vz € dom f)
< (iii) 0f(z) € Ly (Vz € dom f)
< (iv) argmin f[-p] € Mo (Vp € RY with inf f[—p] > —o0).

THEOREM 5.3. Let g: RY — RU{+00} be a polyhedral convez function
with dom g # 0. Then,

(i)ge Ll
<= (ii) ¢'(p;-) € oL (Vp € dom g)
< (iii) dg(p) € My (Vp € dom g)
< (iv) argming[—z] € Lo (Vz € RV with inf g[—z] > —o0).
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In the following, we first prove Theorem 5.3, then Theorem 5.1, and
finally Theorem 5.2.

Proof of Theorem 5.3 The implication (i) = (ii) is by Theorem 4.32
(ii). To show the reverse implication, we assume (ii) for g. For any p €
dom g, there exists € > 0 such that

9(@) —9(p) = 9g'(p;a —p) (Vg € No(p,€)).

Hence, g satisfies (LF1joc) and (LF2j,c), yielding (i) by Theorem 4.26.

The equivalence (ii) <= (iii) is by Theorems 4.4 and 4.38. The im-
plication (i) = (iv) follows from Theorem 4.34. We conclude the proof of
Theorem 5.3 by showing that (iv) = (ii) holds.

LemMA 5.4. Let g : RV — R U {+oc} be positively homogeneous poly-
hedral convexr with dom g # 0. Suppose that arg min g[—z] is an L-conver
cone for any x € RY with inf g[—x] > —oco. Then, g € oL.

Proof. Define p, : 2¥ — R U {+o00} by (53). Since 0 € dom g, there
exists some z € RY with 0 € argmin g[—2]. By (LS2) for argmin g[—z],
we have 1 € argmin g[—z] C dom g, i.e., py(V) = g(1) < 4+00. As is shown
below, we have g = g, , where g, is defined by (50) with p = p,. Thus, we
have p, € S by Theorem 4.31, which, together with Corollary 4.37, implies
g €oL.

We now prove g = g, . Note that g(p) < g,,(p) (p € RY) by Theorem
4.2. This implies that g(p) = g,,(p) = +oo if p & dom g. Therefore, we
may assume that p € domg. Then, there exists some z € RY such that
p € argmin g[—z]. By Theorem 3.25, there exists some chain Fy (C 2V)
and (Ax | X € Fo) (C R) such that

P= Y Axxx, Ax 20 (VX € F\{V}),
XeFo
Fo C{X CV|xx € argming[—z]}.

By the linearity of g over arg min g[—z] and by (50), we have

9) = D Axg(xx) = g5, (P
XeFo
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We now prove (iv) = (ii). For any p € domg, we denote g, = ¢'(p;-)
for notational simplicity. By Lemma 5.4, we have only to prove that
argmin g,[—z] is an L-convex cone for any p € domg and any = € RY
with inf g [-2] > —oo.

Let p € domg, and z € RV be such that inf g,[—2] > —oco. Then,
we have inf g[—z] > —oco and argmin g[—z] € Lo. Let v € T be such
that D(y) = argming[—z]. Since argmin g,[—z] is the tangent cone of
argmin g[—z] at p, it can be represented as

argmin g)[~2] = {g € RV | q(v) — q(u) < 0 (V(u,v) € 4,)},

where 4, = {(u,v) | u,v € V, p(v)—p(u) = y(u,v)}. Since A, is transitive,
argmin g,[—z] is an L-convex cone by Theorem 3.24. Thus, Theorem 5.3
is proven. |

The following lemma is needed for the proof of Theorem 5.1.

LeEMMA 5.5. Let g € L, and z,y € RY be such that inf g[—z] > —oc0
and inf g[—y] > —oo. Then, for any u € supp™(z — y), there ezists v €
supp~ (z — y) such that

p(v) — p(u) < g(v) — q(u) (Vp € argmin g[—z], Vg € arg min g[—y]). (55)

Proof. First we note that z(V) = y(V)) = r, where r € R is the value in
(LF2) for g. Let u € supp™(z —y). We have argmin g[—=z], arg min g[—y] €
Lo by Theorem 4.34. Hence, it suffices to show the following: there exists
some v € supp~ (z — y) such that p(v) < q(v) (Vp € D,, Vq € D), where

D, {p | p € argmin g[—z], p(u) = 0},
Dy = {q| g € argmin g[-y], g(u) = 0}.

Assume, to the contrary, that for any v € supp™(z — y), there exists a
pair of vectors p, € Dy, g, € D, such that p,(v) > ¢,(v). Set

p.=\/{po lvesupp (- 9)}, ¢.=\{a|vesupp (z-y)}

Then, we have p. € Dy, ¢« € Dy, and p.(v) > g.(v) (Vv € supp~ (z — y)).
Let A > 0 be any value with A < p,(v) — g«(v) for all v € supp™ (p« — q«).
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Putting

A (v € supp™(ps — g4)),

(
év € V \ supp™ (ps — q4)),
(

Q*(
2« (v) + X (v € supp™ (p« — qu)),

v € V \ supp™ (p« — qu)),

v

q P« A (g ) (v

v (p*—Al)vq*:{*(;J))
(i

we have

9(p+) + 9(gx) > g(0') + 9(¢') (56)

by Lemma, 4.28. Since supp~(z — y) C supp™’ (p« — ¢«), we obtain

( z) +{d',y) — (p*,) (@, 9)

Z y(v) | v € supp (p* - q*)}
Z { () (z(v) —y(v)) | veV \suppT (P« —x)}
A {y(v) | veEV\ {u}} Mz(u) —y(u)} > 0.

Combining this inequality with (56), we have
9[==](®') + g9[-yl(d") < g[-=](ps) + 9[-y](ax),

which is a contradiction since p, € argmin g[—z], g« € argming[—y]. |

Proof of Theorem 5.1 First recall Theorem 4.1.

[ € L = ¢g* € M] Let z,y € domg®. Then, inf g[-z] > —occ and
inf g[—y] > —oo. By Lemma 5.5, for any u € supp™(z — y) there exists
v € supp™ (z — y) satisfying the inequality (55), which implies

(9°) (z5v,u) + (9°) (y5 4, v)
= sup{p(v) — p(u) | p € argmin g[—2]}
+ sup{q(u) — ¢q(v) | ¢ € argming[-y]} < O,

where the equality is by Theorems 4.4 and 4.5. Hence, we have (M-EXC’)
for g* and therefore (M-EXC) by Theorem 4.11.
[fe M= f*eL]If f € M, then Theorems 4.5 and 4.17 imply

Of*(p) = argmin f[—p] € My (Vp € dom f°*),

which, together with Theorem 5.3, yields f* € £. |

Proof of Theorem 5.2 The equivalence (ii) <= (iii) is by Theorems
4.4 and 4.20. By Theorems 4.5 and 5.1, the equivalence (i) < (iii) <
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(iv) is rewritten as follows in terms of f°:

f*eL < argminf*[-z]€ Ly (V€ RY with inf f*[—z] > —o0)
< 0f*(p) € My (Vp € dom f*),

which is already shown in Theorem 5.3. |

Proof of Theorem 4.18 (6) From the assumption and Theorem 4.6,
fiOf5 is a polyhedral convex function with (fi0f2)(z) > —oo (Vz € RY).
Hence, it follows from Theorem 4.1 that (f10f5)* is also a polyhedral con-
vex function such that (fiOf2)*(x) > —co (Vz € RY) and dom (f;0f2)® #
(. Theorems 4.6, 4.35 (6), and 5.1 imply (f10f5)* = f + f5 € L, which
shows f10fs € M by Theorem 5.1. |

Proof of Theorem 4.21 Let f : RY — R U {+oc} be a polyhedral
convex function with dom f # § satisfying (M®-EXC). Let p € RY be any
vector with inf f[—p] > —oo. It follows from (M®-EXC) that argmin f[—p]
satisfies (G-EXCQ), i.e., argmin f[—p] is an MP-convex polyhedron by The-
orem 3.8. From the definition of polyhedral M®-convex functions and The-
orem 5.2, the function f is polyhedral Mf-convex. |

6. RELATIONSHIP WITH M/L-CONVEX FUNCTIONS
OVER THE INTEGER LATTICE

The concepts of M-convexity and L-convexity were originally introduced
for functions defined over the integer lattice [29, 30, 32]. In this section,
we present the relationship of M/L-convexity over the integer lattice and
polyhedral M/L-convexity.

A function f : ZYV — RU{+oc} is called discrete M-convez if domgz f # ()
and it satisfies

(M-EXCJZ]) Vz,y € domg f, Vu € suppt(z —y), v € supp™ (z — y) such
that

f($)+f(y)zf(x_Xu+Xv)+f(y+Xu_Xv);

where domz f = {z € Z¥ | —00 < f(x) < +00}. On the other hand, a
function g : Z¥ — RU{+oo} is called discrete L-convez if domz g # () and
it satisfies

(LF1[Z]) g(p) +9(a) 2 9(pAa)+9(pVa)  (Vp,q € domzyg),
(LF2[Z]) 3r € R such that g(p+ A1) = g(p) + Ar (Vp € domz g, VA € Z).
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We denote by M[Z] and L[Z], respectively, the classes of discrete M-convex
and L-convex functions:

M[Z] = {f|f:ZY - RU {+oc}, discrete M-convex},
L[Z] {g1g:2ZV — RU {400}, discrete L-convex}.

In the following, we sometimes regard f : Z¥ — R U {+oc} as a function
defined over RY. In such a case, we have dom f C ZV.

REMARK 6.1. The concept of M-convex function over the integer lattice
was first defined in [29, 30], where the effective domain is assumed to be
bounded. The paper [32] discusses the case when the effective domain is not
necessarily bounded, but assumes that functions take only integer values.

The concept of L-convex function over the integer lattice appeared first
in [32], where function values are assumed be integral. Hence, the definition
of L-convex functions above is a slight extension of the original one. |

We also define the set version of discrete M/L-convexity as follows. A
set B C ZV is called discrete M-convez if B # () and it satisfies

(B-EXC|Z]) Vz,y € B, Yu € supp™(z — y), v € supp~ (z — y) such that

m_Xu+Xv€B7 y+Xu_Xv€B-

We call D C ZV discrete L-convex if D # () and it satisfies

(LS1[Z]) p, ge D = pAgq, pVgE€ D,
(LS2[Z]) pe D= p+ X1 €D (VA€Z).

We denote

Mo|Z] = {B| B CZV, discrete M-convex},
Lo|Z] = {D|D CZV, discrete L-convex}.

In this section, we use some known results on discrete M /L-convexity. See
[29, 30, 32, 35] as references.

Discrete M/L-convex functions can be extended to ordinary convex func-
tions by taking their convex closure. Moreover, convex extensions of dis-
crete M/L-convex functions coincide with “local” convex extensions. For
any z € RY and any integer k (> 0), we define the set

HCy(z) = {y € Z" | [2(v)] — k < y(v) < [z(v)] +k (v € V)}.
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THEOREM 6.2. For B € My|Z], we have B € M, and

BNHCo(z) = {y € B| |z(v)] <y(v) < [z(v)](v € V)} (z €RY). (57)

Proof. Let p:2Y — Z U {+o00} be the submodular function such that
B = B(p) NZY. Since B(p) is an integral polyhedron (cf. [17]), we have
B(p) = B € M. For any a,b € Z" the set BN[a, b] is also an integral poly-

hedron if it is nonempty. Thus (57) follows. |

THEOREM 6.3. For D € Ly[Z], we have D € Ly and

DNHCo(p) ={g€ D | |p(w)] <q(v) < [p()] (w€V)} (peRY). (58)

Proof. Let vy :V xV — Z U {+0c0} be the distance function with
triangle inequality which is associated with D (see [32, Theorem 4.20],
[35, Theorem 2.28]), i.e., v is such that D = D(y) N ZV. Lemma 3.21
(v) implies D = D(y) € Lo. Note that for any a,b € ZV the set D N

[a,b] is also an integral polyhedron if it is nonempty. Thus (58) follows. |

Let f:ZV — RU{+oc}. The conver closure f : RY — RU {£o0} of f
is given by

f@)= sup {p,2)+a|py)+a< fy) y€Z)} (zeRY). (59)
peERY ,a€R

We also define a function f : RV — R U {400} by

f(z) =€1§3p€{ép, z)+a|(py)+a< fly) (y € HCo(z))} (z€RY).

(60)

Note that f is the local convex extension of f, i.e., the convex closure of the
restriction of f to the integral points around z. It admits an alternative
expression

. Ay =, Ay =1,

flz) = inf{ 3 M) yeﬂzc‘;(wf’ yef%)(wf’ } (z €RY)
yeHCo(z) /\y >0 (y c HC()(.’L'))

(61)
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by LP duality. From the definition, we have
f)> f(z) (Vz eRY),  f(z) = f(a) (V&€ Z"). (62)

Favati-Tardella [11] investigated the class of functions f : Z¥ — RU{+o0}
for which f = f holds. They call such a function integrally convezr. It is
easy to see that global optimality of integrally convex functions can be
characterized by local optimality.

TueOREM 6.4 ([11, Proposition 3.1]).  Let f : Z¥ — R U {400} be
an integrally conver function and x € dom f. Then, f(z) < f(y) for any
y € ZV if and only if f(x) < f(y) for anyy € ZV with ||y — z||o < 1. 1

Theorems 6.5 and 6.7 show that discrete M /L-convex functions are inte-
grally convex.

THEOREM 6.5. For f € M[Z], we have f(z) = f(z) (Vz € RY) and
f(z) = f(z) (Vo € ZV).

Proof. We prove the former only. The latter follows from the former
and the equation in (62).

We first consider the case when z ¢ domgz f. Define the conjugate f*® of
f by (22). Let p:2Y — Z U {+0oc} be the submodular function associated
with the discrete M-convex set domgz f € Mg[Z], and p € dom f*. If
z(V) # p(V), then

f(x) > sup [(p+axv,z)— sup {(p+axv,y) - f(¥)}
a€ER yeRV

= <p,a?)—f‘(p)+21€1§a{w(V)—p(V)} = +oo.

In the similar way, we can show that f(z) = +oo when 2(X) > p(X)
(3X C V). By the inequality in (62), we have f(z) = f(z) = 400

To show f(z) = f(x) for z € domz f, we consider the following dual pair
of LP problems:
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(LP1) Maximize (p,z)+«
subject to  (p,y) +a < f(y) (y € HC,(z)),pe RY, a € R,

(LP2) Minimize > N f)

y€EHC1 ()
subject to S hy=z, D A =11 >0 (y € HCi(2)).
yeHC(z) yeHC:(z)

(LP2) has a feasible solution since z € HC;(z) Ndomz f. Let (p*,a*) (€
RY x R) and \* = (X} | y € HCi(z)) be optimal solutions of (LP1) and
(LP2), respectively. Then, it holds that

f@) <@phay+a = D Nfl) < f@). (63)

y€HC1 ()

We will show that both of the inequalities hold with equality.
Put

B ={y € HCy(2) | (p",y) + a* = f(y)} = arg min f[-p*](y) (€ Mo[Z]).
y€HCy(z)

The complementary slackness condition implies {y € HCy(z) | Aj > 0} C
B, which shows z € B. In particular, we have z € B N HCy(z) by Theorem
6.2 since B € Mo[Z]. Hence, there is another optimal solution A = (}, |
y € HC,(z)) of (LP2) such that if A, > 0 then y € B N HCy(z). Since

Yooxniw= Y Nw= S M) > @),

y€HC1 () y€EHC1 () y€EHCo(2)

the second inequality in (63) holds with equality.

Let yo € BNHCo(x). Then, we have f[—p*)(yo — xu + Xv) > f1-5"](v0)
for any u,v € V. Since local optimality means global optimality for dis-
crete M-convex functions [32, Theorem 4.6], we have a* = f[—p*](yo) <

fl=p*lly) = %) + fly) (Vy € domgz f), ie, (p*y) +a* < f(y)
(Vy € domgz f). By (59), the first inequality in (63) holds with equality. [
The following theorem claims that we can choose a common optimal A

in (61) for two discrete M-convex functions. An implication of this fact is
discussed later in Corollary 6.8 (i).
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THEOREM 6.6. For any f,g € M[Z] and z € RY, there exists A = (), |
y € HCo(z)) such that

Shy=gz, Y A=1, X\ >0(yeHCo(z)), (64)

y€HCo () yEHCo ()
F@)=F@) = Nfl), g@) =d@) =D \gly). (65)
y€HCo () yEHCo(w)

Proof. We may assume that x € domgz f N domgz g, which implies both
f(z) and g(z) are finite. By (60), there exist (p, ), (¢g,3) € RY x R such
that

(,y) +a < f(y) (y € HCo(x)), (p,z) +a = f(z),
(@,y) + B < g(y) (y € HCo(x)), (g,z) + B = g(=).
Put

By = {y € HCo(z) | (p,y) + a = f(y)} (€ Mo[Z]),
By, = {y € HCo(2) | (g,9) + 8 = 9(y)} (€ Mo[Z)).

Then, we have z € By N B, = By N B,. Therefore, there exists A = (), |
y € HCy(z)) satisfying (64) and A, =0 (y ¢ ByNBy). Such ) satisfies (65)
by LP-duality. |

THEOREM 6.7 ([32, Theorem 4.18]). Let g € L[Z].
(1) For q € domz g and p € [0,1]V, we have

g9(¢+p) = §lg+p)

k
= 9@+ 3 - P ola+ ) ~s@) (66)
j=1

where p; and V; (j = 1,---,k) are as in the definition of the Lovdsz
extension (50) and pry1 = 0.
(2) g(p) = 4(p) = g(p) (VP € ZV).
(3) glp+ A1) = g(p) + \r (Vp e RY, X\ € R), where r is in (LF2[Z]).
(4) The equalities in (66) remain valid for ¢ € domz g and p € RY with
max,ey p(v) — mingey p(v) < 1.

As a corollary of Theorems 6.6 and 6.7, we obtain the following proper-
ties. For a function g : Z¥ — R U {—oc}, we define the concave closure
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g:RY -5 RU{£o0} of g by

@)= _inf (o) +alpy)+a>gl) ez} (zeRY).

Note that § = —(—g).

COROLLARY 6.8.
(i) Let f, g be functions such that f,—g € M[Z]. If f(z) > g(x) for any
z € ZV, then we have f(x) > g(x) for any v € RV .
(ii) Let f, g be functions such that f,—g € L[Z]. If f(p) > g(p) for any
p € ZY, then we have f(p) > g(p) for anyp € RY.

The following theorems show that the convex extension of discrete M /L-
convex functions are closely related to polyhedral M/L-convexity.

THEOREM 6.9. Let f € M[Z]. If f is polyhedral conver, then f € M.
In particular, f € M if domg f is bounded.

Proof. By Theorems 6.2 and 6.5 (see also [32, Theorem 4.11]), we have
argmin f[—p] = argmin f[-p] € Moy (Yp € RY),

which, together with Theorem 5.2, implies f € M. |

THEOREM 6.10. Let g € L[Z]. If § is polyhedral convex, then g € L. In
particular, g € L if {p € domz g | p(v) = 0} is bounded for some v € V.

Proof. By Theorems 6.3 and 6.7 (1), we have
argmin g[—z] = argmin g[—z] € Lo (Ve € RY),

which, together with Theorem 5.3, implies g € £. |

REMARK 6.11. For f:Z"Y — RU{+oo}, if domz f is bounded then its
convex closure f is polyhedral convex, but in general f is not necessarily
polyhedral convex, even if f is discrete M/L-convex.

For example, consider the function f : Z2 — Z U {+o0} defined by

_ [ (@y) €2 o+y=0),
fz,y) = { +o00 (otherwise).
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It is easy to see that f is discrete M-convex. However, the convex closure
f of f has infinite number of linear-pieces, and is not a polyhedral convex
function. |

We now introduce two new classes of M /L-convexity. We call a function
integral M-convez (resp. integral L-convexz) if it is represented as the convex
closure of some integer-valued discrete M-convex (resp. discrete L-convex)
function. We denote by My, and L;ng, respectively, the classes of integral
M-convex and L-convex functions:

Mine = {f | f = fz for some fz : ZV = Z U {+00}, fz € M[Z]},
Line = {99 =9z for some gz : AR/ AY {400}, gz € L[Z]}.

Note that integral M /L-convex functions may have infinite number of linear
pieces and therefore are not polyhedral convex in general if the effective
domain is unbounded (see Remark 6.11).

It was shown in [32] that integer-valued discrete M-convex and L-convex
functions are conjugate to each other under the integer Fenchel transfor-
mation.

THEOREM 6.12 ([32, Theorem 4.24]).
(i) For an integer-valued discrete M-conver function f : ZV — Z U {+oc},
the function g : ZV — Z U {+oo} defined by

9(p) = sup {(p,z) — f(x)} (peZ")

z€ZY

1s integer-valued discrete L-convez.
(ii) For an integer-valued discrete L-convex function g : ZYV — Z U {+o0},
the function f : ZV — Z U {+o0o} defined by

flz) = Seuzpv{(p,w) —g(p)} (xeZ")

is integer-valued discrete M-conver.

(iii) The mappings f — g and g — f defined in (i) and (ii), respectively,
provide a one-to-one correspondence between the classes of integer-valued
discrete M-convexr and L-conver functions, and are the inverse of each
other.

Using this conjugacy relationship, we can show that integral M-convex
and L-convex functions are conjugate to each other.
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LEMMA 6.13. Let f : ZV — ZU{+0c0} be an integrally convex function.
For any p € RY, if inf f[—p] is finite, then argmin f[—p] # 0.

Proof. Put

€0 = SfrTliCnV{p(S) = p(T) = [(p(S) = p(T)] + 1} (> 0).
We claim that for any z,y € domgz f with ||y — || < 1, if f[-p](¥) <
fl=pl(z) then f[—pl(y) < f[-pl(z) — eo. Since ||y — z[[cc <1, there exist
some S,T C V such that y = =z + x5 — xr- I f[-pl(y) < f[-p](z)
then we have f(y) — f(z) < p(S) — p(T) < [(®(S) — p(T))], implying
f(y) = f(=) < [(p(S) — p(T))] — 1 since f(y) — f(z) € Z. Hence, we have
the claim.

Let z. € domg f satisfy f[—p](z«) < inf f[—p] + €0/2, and y € domgz f
be any vector with ||y — z«||eo < 1. If f[—p](y) < f[—p](z+), then

—e0 2 f[=pl(v) = f[=pl(zs) > inf f[=p] = (inf f[=p] + €0/2) > —c0/2,

a contradiction. Hence, we have f[—p|(y) > f[—p](z«) for any y € domz f
with ||y — Z«||cc < 1. By Theorem 6.4 we have z, € argmin f[—p]. |

For any f: RV — RU {+o00}, we define fz : Z¥ - R U {£oc} by

fata) = { 19 e ) (67)

THEOREM 6.14.
(i) For f € My, it holds that f* € Liy and

fop) = sup {{p,z) — f(z)} (peRY). (68)

z€ZV

In particular, for any p € dom f* there exists some x € dom f N ZY such

that f*(p) = (p,x) — f(z).
(ii) For g € Lin, it holds that g* € Miny and

9°(2) = sup {(p,2) —g(p)}  (z€RY).

pEZY

In particular, for any x € dom ¢® there exists some p € domgNZY such
that g*(z) = (p, ) — 9(p).
(i) The mappings f — f* (f € Min) and g = g°* (g € Lint) provide a
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one-to-one correspondence between Miny and Ling, and are the inverse of
each other.

Proof. We prove the claim (i) only, since (ii) can be shown similarly to
(i), and (iii) is an immediate corollary to (i), (ii), and Theorem 4.1.

The equation (68) follows from the integral convexity of fz shown in
Theorem 6.5. For any p € dom f*® Lemma 6.13 assures the existence of
z € dom f NZY with f*(p) = (p,z) — f(x). We abbreviate (f*)z to f.
Theorem 6.12 and the equation (68) yield f3 € L[Z]. Therefore, it suffices
to show f*(p) = f2(p) (p € RY).

We have f*(p) = f3(p) for integral vectors p € ZV and f*(p) < f3(p)
(p € RY). Hence, we may assume f*(p) < +oc since otherwise f*(p) =

f3(p) = +oo holds. Then, there exists some o € domg fz such that
f*(®) = (p,x0) — fz(w0). Put

D={qeR" | f*(q) = (¢ %0) — fz(z0)}.

Then, we have
D = 8fz(x0) = 8fz(x0) NZY, fz(x0) NZY € Lo[Z]

(see, e.g., [32, Theorem 4.7], [35, Theorem 2.41]), i.e., D is an integral poly-
hedron. Thus, there exist some integral vectors {g;}¥_; (k > 1) in 8fz(zo)N
ZV such that p can be represented by a convex combination of {g;}% .
Since f* is linear over D, f*(q;) = fg(q;) for i = 1,---,k, and f*(p) <

f2(p), convexity of f* implies f*(p) = fg(p). 1

7. DUALITY
7.1. Duality Theorems
In this section, we discuss duality theorems for polyhedral M/L-convex
functions.
We first state the Fenchel duality for convex/concave functions. For a
convex function f : R¥ — R U {+oo} and a concave function g : RV —
R U {—o0} with dom f # @, dom g # (), we have

inf {/(s) - g(a)} > inf {f(@) - g(x)}
€ ory  rer NS ofy _ e 69)
> sup {g°() — f*(0)} > sup {g°(p) — )}, (

peERV peEZV
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where the concave conjugate g° : RYV — R U {00} is defined by
9°(p) = inf {{(p,z) —g(x)}  (peRY).
z€RV

The Fenchel duality (70) below shows that the second inequality in (69) is
satisfied with equality under a certain assumption. This is just an applica-
tion of the existing result in convex analysis to polyhedral convex/concave
functions, and it stands independently of M-convexity/M-concavity or L-
convexity/L-concavity of functions. On the other hand, the claim (ii) of
Theorem 7.1 below shows that all inequalities in (69) are satisfied with
equality if f and g are integral M-convex/M-concave. This integrality
result is not obtained from the convexity/concavity alone, but from the
combination of the convexity/concavity and the combinatorial properties
of f and g.

THEOREM 7.1.
(i) Let f : RV = RU{+o00} and g : RV — R U {—o00} be polyhedral
convez/concave functions with dom f # 0, domg # 0. If either of (a)
dom f Ndomg # 0 and (b) dom f* Ndom g° # @ holds, then we have

inf {f(z) —g(x)} = sup {g°(p) — f*(P)}- (70)

zeRV peRV

The supremum is attained at some p. € RY if (a) is satisfied, and the
infimum is attained at some x. € RY if (b) is satisfied.
(i) If f, —g € My and either (a) or (b) is fulfilled, then we have

inf {f@) —g@)} = inf {/(@) - g@)
= swp (")~ ')} = sw {°() — £ (D)}-

peRV pEZV

The supremum is attained at some integral p, € ZY if (a) is satisfied, and
the infimum is attained at some integral z, € ZV if (b) is satisfied.

Proof. The claim (i) is a standard result; see [41, 44]. We derive (ii)
from the corresponding result for discrete M-convex/concave functions es-
tablished in [32].

We define the function fz : Z¥ — Z U {+oc} by (67), and gz : ZV —
Z U {—oc0} by

v
gz(a:) = { g_(g g ; évg’
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Then, we have fz,—gz € M[Z]. We also define f3 = (f*)z : Z¥ —
Z U {+oo} and g3 = (9°)z : Z¥ — Z U {—oc} in the similar way, where it
is noted that (cf. (68))

f2) = suwp {{p,2) - f2(z)}  (peZ"),

z€EZV
95(p) = inf {(p,2) —gz(z)} (peZV).

z€EZV
We have dom f = domgz fz and dom g = domg gz, and from Theorem 6.14
follows dom f® = domy f; and dom g° = domg g5. These properties imply
that the condition (a) is equivalent to domgz fz N domgz gz # 0, and (b) is
equivalent to domgz f3 N domg g5 # 0. Thus, the first and the last term in
(69) are equal by the Fenchel-type duality for discrete M-convex/M-concave
functions [32, Theorem 5.2], and each inequality in (69) holds with equal-
ity. 11

When f and g are polyhedral M-convex and M-concave, respectively, in
(70), then f*® and g¢° are polyhedral L-convex and L-concave, respectively,
by Theorem 5.1. Hence, Fenchel duality also reads that the minimization of
the sum of polyhedral M-convex functions is equivalent to the minimization
of the sum of their conjugate polyhedral L-convex functions. Note that the
sum of polyhedral L-convex functions is also polyhedral L-convex, whereas
the sum of polyhedral M-convex functions is not necessarily polyhedral
M-convex (cf. Remark 3.5). As a corollary of Theorem 7.1, we obtain
an optimality criterion of the minimization of the sum of two polyhedral
convex functions.

COROLLARY 7.2. (i) Let f; : RY = RU{+o0} (i = 1,2) be a polyhedral
convex function with dom f; N dom fy # 0. Then, there exists p, € RY
such that

it {fi@) + f@)} = nf, Al-pd@) + inf Llpd@). ()

(ii) If f1, fo € Mins and dom f; Ndom fo # 0, then there exists an integral
ps € ZV such that

it (i) + L@} = inf (1) + H(@)
= inf fi[-p](x) + inf folp](x) = inf fi[-p.](x) + inf fo[p.]().
z€RV z€RV z€EZV z€ZV

REMARK 7.3. The conditions (a) and (b) in Theorem 7.1 cannot be
removed, as shown in the following example.
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Let f: R?> 5 RU{+o00} and g : R? - R U {—o0} be defined by

_Jxi (x14+z2=1), |z (122 =-1),
f($1;$2) - { +loo (xi +$z ;é ]_)’ g(.Z'l,Z'Z) o { —OCl) (Z’i +IL'§ # —].).

Then, we have f,—g € M N Min, dom f Ndom g = @), and

it s ¥2) = 9(F1,22)§ = +00.
($1=;2)€R2{f(m1 T2) — 9(@1,22) } 00

On the other hand, it holds that

. 2 (p1—-p2=1), _f =p2 (p1 —p2=-1),
o) = {72, PIRED e = { B TR ST

We have f*,—g®* € LN Ly, dom f* Ndom g° = @, and

sup  {g°(P1,p2) — f*(P1,p2)} = —00.
(p1,p2) ER2

Neither (a) nor (b) is fulfilled, and the equation (70) does not hold. |

We state separation theorems for polyhedral convex/concave functions.
Whereas the claim (i) of Theorems 7.4 below is just the standard separation
theorem in convex analysis, (ii) and (iii) are based on the combinatorial
properties of M /L-convexity and their essence lies in the discrete separation
theorems shown in [29, 30, 32]. See also [18] for the proof of (ii) and (iii).

THEOREM 7.4. Let f : RY - RU{+o00} and g: RV - RU{—00} be
functions with dom f Ndom g # (0. Suppose f(x) > g(x) (Vz € RY) holds.
(i) If f and g are polyhedral convex and concave, respectively, then there
exist p, € RV and o, € R such that

f(.’I}) > (ps, T) + ax > g() (r € RV)- (72)

(ii) If f, —g € Mint, then we can take integral p. € ZV and . € Z in (72).
(iii) If f, —g € Lins, then we can take integral p. € ZV and on € Z in (72).

7.2. Submodular Flow Problem with M-convex Cost Function

We consider a generalization of the ordinary submodular flow problem
and state a duality theorem for the problem. We also provide two optimal-
ity criteria, one of which is by negative cycles and the other by potentials.
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The generalization here is a polyhedral extension of the framework pro-
posed in [29]. See, e.g., [3, 10, 12, 17, 40] for the ordinary submodular flow
problem.

Let G = (V, A) be a directed graph. A flow is a vector £ € R“. Suppose
that we are given a flow cost function f, : R - R U {+o0} for each a € A
and a boundary cost function f : RY — R U {+oc0}. Then, the minimum
cost flow problem with a boundary cost function is formulated as follows:

(MFBC) Minimize F(£) = f(0€) + Z fa(&(a)) subject to & € R4,
a€cA

where ¢ € RV is the boundary of ¢ defined by (1). The problem (MFBC)
coincides with the ordinary (linear) submodular flow problem if each f,
is a linear function in a nonempty closed interval and f is the indicator
function of some M-convex polyhedron, i.e., f is a polyhedral M-convex
function with f: RY — {0,+00}. We call a flow ¢ feasible if F(£) < +oc.

We then consider the dual of the problem (MFBC). A potential is a
vector p € RV. Suppose that we are given a tension cost function g, : R —
RU{+00} for each a € A and a potential cost function g : RV — RU{+o00}.
Then, the minimum cost tension problem with a potential cost function is
formulated as follows:

(MTPC) Minimize G(p) = g(p) + Z ga(—dp(a)) subject to pe RV,
a€A

where 6p € R4 is the coboundary of p defined by (3). The problem
(MTPC) coincides with the ordinary minimum (convex-)cost tension prob-
lem if g(p) = 0 for any p € RY. We call a potential p feasible if G(p) < +oo.

Theorem 7.1 (i) yields the duality between (MFBC) and (MTPC). Note
that this is independent of M/L-convexity.

THEOREM 7.5. Let f and g be polyhedral convex functions such that
dom f # 0, domg # 0, and g = f*, and for each a € A let f,,g9, € C!
satisfy go = f2. Suppose that at least one of two problems (MFBC) and
(MTPC) has a feasible solution. Then,

inf F = — inf .
Jf, F(6) = — inf, Glp)

If (MFBQ) is feasible, then G(p.) = inf G(p) for some p. € RY, and if
(MTPC) is feasible, then F(&,) = inf F(£) for some &, € RA.
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Proof. Define functions fi, fa : RV — R U {£o0} by

fi@) = inf {D fu(€(a) |06 = ~a}, fo(2) = f(-z) (z €RY). (73)

Similarly, we define functions gi,g2 : RV — R U {£o0} by

010 = 9u(-0p(@), g(p) =9(p) (PERY).

a€A

Note that fi and g; are special cases of functions f and g in Example 2.4,
where T' = V. Moreover, if (MFBC) is feasible, then fi(z¢) is finite for
some zo € RY, and if (MTPCQC) is feasible, then g;(po) is finite for some
po € RY. Therefore, f; and g, are polyhedral convex functions such that
fi > —00, g1 > —o00,dom f1 # @, domg; # 0, and g; = f;. Moreover,
we have (—f2)°(p) = —ga(p) (Vp € RY). Thus, Theorem 7.1 (i) yields the
following equation:

nf P = inf {/i(2) + hla)}
— — inf {@() +a@)} = — inf G).
PER pER

To state the first optimality criterion, we define the auxiliary network
(Ge = (V, Ag),we) associated with a feasible flow ¢ € R4. The underlying
graph G¢ has the vertex set V' and the arc set A, consisting of three disjoint
parts: Ag = Fy U Bg U Jg, where

e
|

= {ala €A, fi((a);+1) < +oo},
Be = {a|a€A, fi(&(a);—1) < +oo} (@ : reorientation of a),
Je = {(u,v) |u,v €V, u#v, f(0&v,u) < +oo}.

The weight function we : A — R is defined by

fa&(a); +1) (a € Fy),
wg(a) = § f(&(a); =1) (a € By),
f1(0&v,u)  (a€ Jg).

For any cycle C (C A¢) in G, we define the weight of C by we(C) =
Y {we(a) | a € C}, and call C' a negative cycle if we(C) < 0.

THEOREM 7.6. Let f be a polyhedral convexr function with dom f # 0,
and £ € R4 be a feasible flow.
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(i) There is no negative cycle in (Ge,we) if € is optimal for (MFBC).
(ii) The converse is also true if f is M-convez. That is, for f € M:
& is optimal for (MFBC) <= there is no negative cycle in (G¢,we).

Proof. (i): Suppose that there exists a negative cycle C' (C A¢) in Ge.
We show that F(&.) < F(€) holds for some flow & € R4, Put

Cr=CnF, Cg=CNB;, C;=CnJe, y= Y (xv—Xu)
(u,v)€Cy

Then, there exists a sufficiently small a > 0 such that

FO6+ay) — f(0€) = af'(3&y) < a Y we(u,v), (74)

(u,v)€Cy
fa(&(a) + a) — fa(€(a)) = awg(a)  (a€Cr), (75)
fa(&(a) — a) — fa(€(@)) = owg(a)  (a€Ch), (76)

where the inequality in (74) is from Theorems 4.2 and 4.4. We define a
flow & € R4 by

£(a)+a (a€Cr),
é«(a) = § €&(a) —a (a € Ch),

&(a) (otherwise).

Combining the inequalities (74), (75), and (76), we obtain

F(&)—F(§) = {f@&+ay) - FOO}+ Y {fa(€(a) + ) — fal(&(a))}
a€Cr
+ Y {fal€ — fa(€@))}
aeCp
< awe(C) < 0.

(ii): Suppose that there exists a flow & € RY with F(&,) < F(€). To
prove the existence of a negative cycle in (G¢, wy), it suffices to show the
existence of a “circulation” in (G¢,we) with negative cost w.r.t. we, i.e.,
the existence of ¢ : A — R satisfying ¢ > 0, ZaeAg we(a)((a) < 0 and

Z{C | a(e Ag) leaves v} = Z{C | a(€ Ag) enters v} (v € V). (77)
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We have

faé4(a)) — fa(£(a))

v

{&:(a) — ¢(a)} fa((a); +1)
(Va € supp™ (& =€),  (78)
fa(é.*(a')) - fa(é.(a))
( —

vV

{&(a) = &x(a)} fo(&(a); —1
(Va € supp~ (&«
f(9&) — f(0€) > f'(0&; O« — DE). (80)

By Theorem 4.15 (ii), there exists some A = (Ayy | (u,v) € J¢) such that

Z )‘UU(XU - Xu) = 6&* - 867 )‘uv 2 0 ((U,U) € Jf)’
(u,v)EJe

D Awf'(9&v,u) = (86 06, - OF). (81)

(u,v)EJe

We now define a function ¢ : A = R as follows:

It is easy to see that ¢ > 0 and ( satisfies (77). Moreover, (78), (79), and
(81) imply

Y wela)(@) = Y {&la) — @)} f(E(a); +1)

a€A¢ a€suppT (£« —§)
+ Y {é@) = &@ @) =1 + Y Auf' (08 v,u)
a€supp~ (€4« —&) (u,v)EJe

< F(&) - F() < 0.

Hence, ( is a circulation in (G¢, we) with negative cost. |

REMARK 7.7. The claim (ii) of Theorem 7.6 does not hold in general
when f & M.

Let G = (V,A) be a directed graph with V = {u,v,w} and A =
{(u,w), (v,w)}, fo : R > RU{+0o0} (a € A) a family of flow cost functions
such that

dom f, =[0,1], fo(a) =0 (a € dom f,),
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and f: RV - R U {4} a boundary cost function such that

—min{z(u),z(v)} (z(uw) >0, z(v) >0, z(V)=0),
+o0 (otherwise).

@)= {

It is easy to see that f is polyhedral convex, but not polyhedral M-convex.
For a feasible flow ¢ = (0,0) € RA, the auxiliary network (G¢ =
(V, Ag), we) is such that

A = {(uw,w), (v,w), (w, uw), (w,v)}, we(a) =0 (a € Ag).
There is no negative cycle in (G¢,w¢), but £ is not optimal; a feasible flow
&, € R4 is optimal if and only if either &, (u, w) = 1 or &, (v, w) = 1 holds. |
We next state an optimality criterion by potentials. Recall the definition
of the coboundary dp of a potential p € RV in (3).

THEOREM 7.8. Let &, € R4 be a feasible flow.
(i) If the condition

9¢. € argmin f[—p,],  &.(a) € argmin fo[-n(a)] (Va € A) (82)

holds for some p. € RV and n = —6p., then &, is optimal for (MFBC).
(ii) Suppose that f is polyhedral conver with dom f # 0, and f, € C!
(a € A). Then, &, is optimal for (MEBC) if and only if (82) holds for
some p, € RV and n = —6p..

(iii) If p. € RY and n = —6p. satisfy (82), then we have

P«(v) = pa(u) Swe(u,v)  (V(u,0) € Ag,). (83)

(iv) Suppose f € M and f, € C! (a € A). Then, &, is optimal for (MFBC)
if and only if (83) holds for some p, € RY.

Proof. Note that

F(&) = f[-pJ06) + Y fal-n(@)]((a)

a€A

for any p. € RV and n = —dp.. Hence, the claim (i) follows immediately.
The claim (iii) is also immediate from the definition of w.
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(ii): Suppose &, is optimal for (MFBC). Define f; : RY — R U {£oo}
(i=1,2) by

fi(x) = f(2), = inf {D fu(é(a)) |0E =2} (z€RY).

R a€A
Then, Corollary 7.2 implies the existence of p, € RY with (71). Note that

Jinf folp.](@) = ot AP0y + ) faléla

acA
= Z Jnf {op.(a)a + fa(@)},
a€A

where the second equality is by (p«, 9&)y = (0p«, £) a. Hence, we have (82).
(iv): By Theorem 4.12 for f € M and the convexity of f, (a € A), the

condition (82) is equivalent to (83). Hence, the claim follows from (ii). |

REMARK 7.9. The following claim is easy to show: for a feasible flow
¢ € RA, if there exists p, € RV with (83), then there is no negative cycle
in the auxiliary network (G¢,we). Indeed, for any cycle C in (G, we)

we(@) = Y welw)> Y (palv) ~ pu(w)} =0

(u,v)eC (u v)eC

follows from (83). The converse is also a well-known fact in graph theory. |

Summarizing the above results for f € M, we obtain the following state-
ment.

COROLLARY 7.10. Suppose f € M. For any feasible flow £ € R4, the
following three conditions are equivalent:
(OPT) & is optimal for (MFBC).
(NNC) There is no negative cycle in the auziliary network (G¢,we).
(POT) There ezists a potential p € RY with (83).

7.3. Network Induction

As shown in Section 4 (Theorems 4.18 and 4.35 in particular), there are
various operations for polyhedral M/L-convex functions. In this section,
we explain a more powerful operation called network induction. Network
induction is a transformation by using networks, and includes many oper-
ations such as translation, restriction, projection, etc., as its special cases.
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We show that polyhedral M/L-convex functions can be transformed into
polyhedral M/L-convex functions by network induction.

Let G = (V, A;5,T) be a directed graph with vertex set V', arc set A,
and two disjoint vertex subsets S and T called entrance set and exit set,
respectively. For f : R® - RU{+oc} and f, : R = RU {+0} (a € A),
define f : RT - RU {£oo} by

@) = inf{f@+ 3 fu(€(@) | 0 = (@.-3.0), € R,

acA
(z,—y,0) € RS x RT x RV\SYTIL (5 ¢ RT). (84)

For g : RS - RU{+} and g, : R = R U {+} (a € A), define
§:RT = RU{£x} by

3(a) = inf {g(p) + Y 9a(n(0)) |1 = —0(p,q,7) € R,
k2 aeA
(p,g;r) € RS x RT x RVNEUDL - (g € RT).

THEOREM 7.11. Let f, g be polyhedral convez functions such that dom f #
0, domg # 0, and g = f°*, and fa, g, € C' with g, = f2 (a € A). Suppose
that at least one of the following three conditions holds:

(a) f(yo) is finite for some yo € RT,
(b) §(qo) is finite for some qo € R,

(¢) f(yo) < +o00 and §(qo) < +00 for some yo € RT and go € RT.
Then, the following statements hold:

(i) both f and § are polyhedral convex functions such that dom f # 0,
domg#0, f > —o0, §>—o00, and § = (f)°.

(ii) 4f f is polyhedral M-convex, then f is also polyhedral M-convez.

(iii) if g is polyhedral L-convex, then § is also polyhedral L-convex.

Proof. (i): We first prove two claims.

Claim 1 For y € R”, we have f(y) = (§)*(y) if either f(y) < 400 or
3(¢") < +oo for some ¢' € RT.

Define a function f: RS x RT x RV\(5UT) 5 R U {+00} by
f(xl yl ZI) — { f(ml) (yl =Y, 2= 0)3

+o0o  (otherwise).

Then, its conjugate (f)* : RS x RT x RY\(SYT) 3 R U {400} is given by

A @.d,r")=g9@)—d.y)r (@,d,r") € RS x RT x RV\(SUD)),
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By Theorem 7.5, we have

fly) = nf{f(08) + ) fulb(a)) | € RV}

a€A

= —inf{()*@, ¢, ") + Y ga(n(a)) [n=—-6(p',¢',1') € RA,
a€A

®,d,r") € RS x RT x RV\(SUT)}
= —inf{~(¢',y)r +9(d) | d €RT} = (5)"(®)-

[End of Proof for Claim 1]

Claim 2 For q € R7, we have §(q) = (f)*(g) if either j(g) < 400 or
f(y'") < +oo for some y' € RT.

Define a function §: RS x RT x RV\(SVT) 5 R U {+o0} by

P Y R N g(pl) (q’:q),
94, = { +o0o  (otherwise).

Then, its conjugate (§)® : R® x RT x RV\(5YT) 5 R U {400} is given by

@),y 2") = { f@) +{g,y") (2 =0),

+o0 (otherwise).

By Theorem 7.5, we have

9lg) = inf{g®, ¢, r")+ D ga(n(a)) |n= -6, ¢, r') € R,

acA
(p’,q',r') € RS x RT x RV\(SUT)}
= —inf{(9)°(z',y',2") + D _ fal&(a)) | 0 = (z',¢/,2'), £ € RA,

a€EA
(z',y,2') € RS x RT x RV\(5UT)}

= —inf{{(g,y")r + f(—v) | ¥ e RT} = ())*(9).

[End of Proof for Claim 2]

We see from Claim 1 (resp. Claim 2) that the conditions (a) and (c)
(resp. (b) and (c)) are equivalent. Hence, the statement (i) follows.

(ii): Suppose that g is polyhedral L-convex. Define ro = {g(p + A1) —
g(p)}/A, which is independent of p € RS and A € R. Since

dp+ A,g+ A1,r+ A1) =4d(p,q,7) (VA €R),
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we have
gla+A1) = inf {g(0) + > ga(n(a)) | n=—6(p', g+ A1,7")}
T acA
= inf {g(p+21) + 3 ga(n(a)) |0 = ~0(p,q,7)}
o a€A

= g(q) + Aro.

For q1,q> € dom g, we show §(q1) + §(g2) > (g1 A g2) + G(q1 V g2). For
i=1,2,let (p;,qi,r;) € RY satisfy §(q;) = g(pi) + > 4c 4 9a(mi(a)), where
n; = —0(pi, ¢i, 7). Putting

na =—=0(p1 Ap2, 1 Ag2,r1 AT2), nv =—06(p1VPp2,q1Vq2,T1Vr2),

we obtain

ga(m(a)) + ga(m2(a)) > ga(na(a)) + ga(nv(a)) (a € A)

by the convexity of g,, while

g(p1) + g9(p2) > g(p1 Ap2) + g(P1 V p2)

holds by the submodularity of g. Hence follows

9(a) +3(@) > gl Ap2) +9(p1Vp2) + Y {9a(na(@)) + galnv(a))}
a€A

> glqi A g2) + (a1 V q2)-

(iii): Immediate from (i), (iii), and Theorem 5.1. |

Proof of Theorem 4.18 (7) Consider the bipartite graph G = (V' U
{w}UU A S,T) with S =V, T =U"U{v}, and A = {(v,v) | v €
VA\U}U {(u,u') | u € U}, where v’ € U’ is the copy of u € U. Then, we
have f(yo,y) = f(—yo0,—y) for (yo,y) € R x RV, where f is defined by
(38) and f is the induced function defined by (84). Thus, f is polyhedral
M-convex by Theorem 7.11 (ii). |

REMARK 7.12. The convolution of two functions can be represented as
a special case of network induction, and vice versa.

We first show how to represent the convolution of two functions as a
network induction. Let f; : RV — R U {+o0} (i = 1,2). Let V; and V; be
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disjoint copies of V and consider a bipartite graph G = (V1UVLUV, 4; S, T)
with S =V1 UV, T =V, and A = {(v1,v) | v € V}U{(va,v) | v € V},
where v; € V; is the copy of v € V (i = 1,2). Define f : R"1V"2 —
RU{+o}and f, : R > RU {+o0} (a € A) by

f(@1,22) = fi(z1) + fa(za) (zi € RYY), fo(a) =0 (a€R).

Then, fiOf, = f, where f is the induced function defined by (84).

We next show that the function f obtained by the network induction
(84) can be represented as the convolution of two functions. Suppose we
are given a directed graph G = (V, A;S,T) with an entrance set S and
an exit set T, and functions f : RS — RU {+}, fo : R = RU {+0}
(a € A). We define f; : RSYT » RU {+o0} (i =1,2) as

fl () = { fi—%? Eztie(r)vfzi)s’e) (=€ RY, y€ RY),

£ € R4,

f2($;y) = inf {Z fa(g(a)) 8€ = (—IL‘, _yao)

a€A

} (x € R5, y e RT).

Then, the convolution f;Of; : RSYT — R U {400} is written as

. R . — cRS
(i) = it { fiton )+ faan) | D F 2o R ]
= inf{f1($1,0T) + fo(@2,y) | 21 + 22 = 7, z; € RS}
= inf{f(z') + fa(z —2',y) | 2’ € RS}
A ! S
= inf {f(wl) + Zfa(g(a)) ‘ gEGZR(x,I f:ce,i/,’(]) }

a€A

for z € RS and y € R7. Thus, (i0/,)(0s,y) = f(y) holds for y € RT. |

ACKNOWLEDGMENT
The authors thank Satoru Fujishige for his helpful comments.

REFERENCES

1. R. K. Ahuja, T. L. Magnanti and J. B. Orlin, “Network Flows — Theory, Algorithms,
and Applications,” Prentice Hall, Englewood Cliffs, 1993.

2. G. Birkhoff, Rings of sets, Duke Mathematical Journal 3 (1937), 443-454.



82

3.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

MUROTA AND SHIOURA

R. E. Bixby and W. H. Cunningham, Matroid optimization and algorithms, in R. L.
Graham, M. Grotschel and L. Lovész (eds.), “Handbook of Combinatorics, Vol. 1,”
Elsevier Science B. V., Amsterdam, Chapter 11, 1995, 551-609.

. A. Bouchet and W. H. Cunningham, Delta-matroids, jump systems, and bisubmod-

ular polyhedra, SIAM Journal on Discrete Mathematics 8 (1995), 17-32.

. W.J. Cook, W. H. Cunningham, W. R. Pulleyblank and A. Schrijver, “Combinatorial

Optimization,” John Wiley and Sons, New York, 1998.

. V. Danilov, G. Koshevoy and K. Murota, Equilibria in economies with indivisible

goods and money, RIMS preprint No. 1204, Kyoto University (1998).

. A. W. M. Dress and W. Wenzel, Valuated matroid: A new look at the greedy algo-

rithm, Applied Mathematics Letters 3 (1990), 33-35.

. A. W. M. Dress and W. Wenzel, Valuated matroids, Advances in Mathematics 93

(1992), 214-250.

. J. Edmonds, Submodular functions, matroids and certain polyhedra, in R. Guy, H.

Hanani, N. Sauer and J. Schénheim (eds.), “Combinatorial Structures and Their
Applications,” Gordon and Breach, New York, 1970, 69-87.

U. Faigle, Matroids in combinatorial optimization, in N. White (ed.), “Combinatorial
Geometries,” Cambridge University Press, London, 1987, 161-210.

P. Favati and F. Tardella, Convexity in nonlinear integer programming, Ricerca Op-
erativa 53 (1990), 3—44.

A. Frank, An algorithm for submodular functions on graphs, Annals of Discrete
Mathematics 16 (1982), 97-120.

A. Frank, Generalized polymatroids, in A. Hajnal, L. Lovész and V. T. Sés (eds.),
“Finite and Infinite Sets,” North-Holland, Amsterdam, 1984, 285-294.

A. Frank and E. Tardos, Generalized polymatroids and submodular flows, Mathe-
matical Programming 42 (1988), 489-563.

S. Fujishige, A note on Frank’s generalized polymatroids, Discrete Applied Mathe-
matics 7 (1984), 105-109.

S. Fujishige, Submodular systems and related topics, Mathematical Programming
Study 22 (1984), 113-131.

S. Fujishige, “Submodular Functions and Optimization,” Annals of Discrete Mathe-
matics 47, North-Holland, Amsterdam, 1991.

S. Fujishige and K. Murota, Notes on L-/M-convex functions and the separation
theorems, Mathematical Programming 88 (2000), 129-146.

T. Ibaraki and N. Katoh, “Resource Allocation Problems: Algorithmic Approaches,”
The MIT Press, 1988.

M. Iri, “Network Flow, Transportation and Scheduling — Theory and Algorithms,”
Academic Press, New York, 1969.

S. Iwata, A capacity scaling algorithm for convex cost submodular flows, Mathemat-
ical Programming 76 (1997), 299-308.

N. Katoh and T. Ibaraki, Resource Allocation Problems, in D. -Z. Du and P. M.
Pardalos (eds.), “Handbook of Combinatorial Optimization II,” Kluwer Academic
Publishers, Boston, MA, 1998, 159-260.

E. L. Lawler, “Combinatorial Optimization: Networks and Matroids,” Holt, Rinehart
and Winston, New York, 1976.



24

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

POLYHEDRAL M/L-CONVEX FUNCTIONS 83

. L. Lovasz, Submodular functions and convexity, in A. Bachem, M. Grétschel and B.
Korte (eds.), “Mathematical Programming — the State of the Art,” Springer-Verlag,
Berlin, 1983, 235-257.

K. Murota, Finding optimal minors of valuated bimatroids, Applied Mathematics
Letters 8 (1995), 37-42.

K. Murota, Valuated matroid intersection, I: optimality criteria, SIAM Journal on
Discrete Mathematics 9 (1996), 545-561.

K. Murota, Valuated matroid intersection, II: algorithms, SIAM Journal on Discrete
Mathematics 9 (1996), 562-576.

K. Murota, Matroid valuation on independent sets, Journal of Combinatorial The-
ory, Series B 69 (1997), 59-78.

K. Murota, Submodular flow problem with a nonseparable cost function, Combina-
torica 19 (1999), 87-109.

K. Murota, Convexity and Steinitz’s exchange property, Advances in Mathematics
124 (1996), 272-311.

K. Murota, Structural approach in systems analysis by mixed matrices — An exposi-
tion for index of DAE, in K. Kirchgéssner, O. Mahrenholtz, and R. Mennicken (eds.),
“ICIAM 95,” Mathematical Research 87, Akademie Verlag, 1996, 257-279.

K. Murota, Discrete convex analysis, Mathematical Programming 83 (1998), 313-
371.

K. Murota, On the degree of mixed polynomial matrices, SIAM Journal on Matriz
Analysis and Applications 20 (1999), 196-227.

K. Murota, Discrete convex analysis — exposition on conjugacy and duality, in L.
Lovész et al. (eds.), “Graph Theory and Combinatorial Biology,” The Jinos Bolyai
Mathematical Society, 1999, 253-278.

K. Murota, Discrete convex analysis, in S. Fujishige (ed.), “Discrete Structures and
Algorithms V,” Kindai-Kagakusha, Tokyo, 1998, 51-100. [In Japanese.]

K. Murota, “Matrices and Matroids for Systems Analysis,” Springer-Verlag, Berlin,
2000.

K. Murota and A. Shioura, M-convex function on generalized polymatroid, Mathe-
matics of Operations Research 24 (1999), 95-105.

K. Murota and A. Shioura, Relationship of M-/L-convex functions with discrete
convex functions by Miller and by Favati-Tardella, Discrete Applied Mathematics,
to appear.

C. H. Papadimitriou and K. Steiglitz, “Combinatorial Optimization: Algorithms and
Complexity,” Prentice-Hall, Englewood Cliffs, NJ, 1982.

W. R. Pulleyblank, Polyhedral Combinatorics, in G. L. Nemhauser, A. H. G. Rinnooy
Kan and M. J. Todd (eds.), “Optimization,” Handbooks in Operations Research and
Management Science, Vol. 1, Elsevier Science B. V., Chapter V, 1989, 371-446.

R. T. Rockafellar, “Convex Analysis,” Princeton University Press, Princeton, 1970.

R. T. Rockafellar, “Network Flows and Monotropic Optimization,” John Wiley and
Sons, New York, 1984.

A. Shioura, Minimization of an M-convex function, Discrete Applied Mathematics
84 (1998), 215-220.

J. Stoer and C. Witzgall, “Convexity and Optimization in Finite Dimension I,”
Springer-Verlag, Berlin, 1970.



84 MUROTA AND SHIOURA

45

46.
47.

48.
49.

50

. E. Tardos, Generalized matroids and supermodular colourings. in A. Recski and L.
Lovész (eds.), “Matroid Theory,” Colloquia Mathematica Societatis Jdnos Bolyai 40,
North-Holland, Amsterdam, 1985, 359-382.

D. Welsh, “Matroid Theory,” Academic Press, New York, 1976.

H. Whitney, On the abstract properties of linear dependence, American Journal of
Mathematics 57 (1935), 509-533.

N. White (ed.), “Theory of Matroids,” Cambridge University Press, London, 1986.

N. White (ed.), “Combinatorial Geometries,” Cambridge University Press, London,
1987.

. N. White (ed.), “Matroid Applications,” Cambridge University Press, London, 1992.



