An Algorithmic Proof for the Induction
of M-convex Functions through Networks

Akiyoshi SHIOURA*
July, 1996

Abstract

Quite recently, Murota introduced an M-convex function as a quantitative generaliza-
tion of the set of integral points in a base polyhedron, as well as an extension of valuated
matroid over base polyhedron. Just as a base polyhedron can be transformed through a
network, an M-convex function can be induced through a network. This paper gives an
algorithmic proof for the induction of an M-convex function. The proof is based on the
correctness of a simple algorithm, which efficiently finds an exchangeable element with a
novel operation called crossover. We also analyze a behavior of induced functions when
they take the value —oc.

Keywords: matroid, base polyhedron, submodular system, convex function.

1 Introduction

In 1990, Dress and Wenzel introduced a valuated matroid as a quantitative generalization of a

matroid [1, 2]. A valuated matroid is a pair of a matroid (E,B) and a function w: B — R

which enjoys the following exchange property:

(VM) For any B,Be B, and uec B— B, there exists v € B— B such that B—u+v €
B, B+u—veB, and

w(B) 4+ w(B) <w(B—u+v) 4+ w(B+u—uv).

Such a function w is called a valuation of (F,B).

Quite recently, Murota introduced the concept of M-convex function [4, 5, 6], which is a
quantitative generalization of integral points in a base polyhedron as well as an extension of
(the negative of) matroid valuation over base polyhedron. It is known that the set of integral
points in a base polyhedron B C ZF has the following simultaneous exchange property:

(B-EXC) For any z,7 € B and uw € E with x(u) > Z(u), there exists v € F with
z(v) < Z(v) such that

T — Xy + Xo» T+ Xy —Xs € B,

where !, € {0,1}F is the characteristic vector of u € E, that is, y/(w) =1 if w=u
and) (w) = 0 otherwise. Following [4, 5, 6], we call B C Z¥ an integral base set if it

*Department of Mathematical and Computing Sciences, Tokyo Institute of Technology, 2-12-1 Oh-okayama,
Meguro-ku, Tokyo 152, Japan, shioura@is.titech.ac. jp.

satisfies (B-EXC). Compared with this, an M-convex function f:Z" — RU{+oc} satisfies,

by definition, the following quantitative generalization of the simultaneous exchange property:

(M-EXC) For any z,7 € domzf and u € E with x(u) > Z(u), there exists v € E with
z(v) < z(v) such that

f@)+ f(@) > fle—xu+x0) + F(@+ X0 — X0)

where domgzf = {x € Z¥ | f(x) < +o0}. The property (M-EXC) implies that the effective
domain domgf of f is an integral base set.

In the theory of matroid and polymatroid, there have been considered several operations
such as reduction, contraction, truncation, union, and network induction (see [3] as a relevant
reference). These operations apply to matroids and base polyhedra. Above all, the induction
by networks is one of the most powerful operations for matroids and base polyhedra and
includes other operations such as truncation, union, etc. as special cases. Recent works by
Murota [4, 6] revealed that those operations mentioned above also apply to M-convex functions.
In particular, an M-convex function can be also transformed into another M-convex function
through a network.

Let G=(V,A;VT, V") be a directed graph with two specified vertex sets V*, V- CV
such that VTNV~ = (). The vertex sets VT,V are called the entrance set and the exit set,
respectively. We denote an upper capacity function by ¢: A — Z U {400}, a lower capacity
function by ¢: A — Z U {00}, and a weight function by 7 : A — R. Suppose we are given
an M-convex function f7 : ZV" = R. A flow is a function p: A— 7Z, and its boundary
Op:V — Z is defined as

Op(v) = {p(a)a€dtv} =) {pla) [acd v} (veEV),

where d7v (§7v) denotes the set of arcs leaving (entering) v. For any function z:V — R,
we denote the restriction of 2z to VT andto V™ by (2)* and (2)~, respectively. A flow
@ is called feasible if it satisfies the following conditions:

c(a) <p(a) <e(a) (a€A),
(weV - (Vtuv)),

We define a function f:ZY" — R U {£oo} as follows:

f(x) = mf{{y,0)a + [T ((09)") | ¢ : feasible flow, (9p)~ =z},

where
(v:)a =D {1(@)p(a) | a € A},

Note that f(x) = 400, by convention, if there is no feasible flow ¢ with (9¢p)” = z. We
have the following theorem, which is proved by Murota [4, Theorem 7.2], [6, Theorem 4.14]

based on a characterization of M-convexity by minimizers and on an optimality condition for
the generalized submodular flow problem [5].

Theorem 1.1 The function f is M-convex provided f :ZY — RU{+oc0}, i.e., it does
not take the value —oo. [|

The objective of this paper is to provide an alternative simpler proof of this theorem, and
also to analyze a behavior of induced functions when they take the value —oc. Our proof is

fairly straightforward and algorithmic, by establishing directly the condition (M-EXC) for the
induced function f. The essence of the proof lies in the correctness of a simple algorithm,
which for any z,7 € domgzf and w € V™ with z(u) > Z(u), finds a vertex v € V~ with
z(v) < z(v) such that

fl@ =)™+ 0)7) +F@+ O™ = 00)7) < fle) + (@) (1)

Here y, € {0,1}" is the characteristic vector of u € V. More specifically, for given feasible
flows ¢ and ¢ with (0p)” =z, (0p)” = and a vertex u € V™ with z(u) > Z(u),
our algorithm finds feasible flows ¢', ¢’ and a vertex v € V~ with z(v) < Z(v) satisfying
(890/)_ =7 — (Xu)” + (X0) 7, (895/)_ =T+ (Xu)” — (Xo)”, and

(1@ a+ FH0)T) + (v, @)a+ FH((0F)T)
< e)a+ FH(00)1) + (v, @)a + [H((02)T).

Our algorithm efficiently finds v € V~ with x(v) < Z(v) which meets the condition
(1). Such v can be simply obtained by computing the value f(x — (xu)” + (xw)”) + f(T +
(Xu)” — (xw)™) for each w e V- with 2z(w) < Z(w), and each value can be computed
by solving a generalized submodular flow problem [5]. However, we have to solve generalized
submodular flow problems at most 2|V ™| times in total, and it takes too much time. On the
other hand, our algorithm finds v € V~ with z(v) < Z(v) satisfying the inequality (1) with
O(|V|?||l¢ — @||a) evaluations for f* and in O(JA| ||¢ — @||4) time, where ¢, @ are given
feasible flows which realize x, T respectively, and

llo = &lla =) _{lela) — @(a)l | a € A}.

It searches for v by iteratively updating flows in a straightforward way. Furthermore, we use
a novel operation called crossover to prevent the algorithm from falling into a loop.

We also discuss induced functions which take the value —oo. For induced functions which
do not take —oo, a behavior is already given as Theorem 1.1, but for induced functions with
the value —oo it is not known yet. The correctness of our algorithm also reveals a behavior
of such functions.

This paper is organized as follows: Section 2 provides the proof for the network induction
based on the correctness of our algorithm. Section 3 describes our algorithm INDUCTION.
Section 4 shows the correctness and the time complexity of the algorithm.

2 The Proof for the Induction

This section gives the alternative proof of Theorem 1.1 and an analysis of induced functions
that take the value —oo.

We first assert a slightly stronger claim than Theorem 1.1. Note that the induced function
f may take the value —oo while an M-convex function does not take the value —oo by
definition.

Theorem 2.1 For any z,7 € domzf and uw€ V™ with x(u) > Z(u), there exists v &€ V™
with xz(v) < Z(v) such that x — (xu)” + (Xv)~ € domzf, T+ (xu)” — (xv)~ € domgzf, and

f(I) + f(f) > f(I - (Xu)_ + (Xv)_) + f(i_}_ (Xu)_ - (Xv)_)'

If f does not take the value —oo, this claim is nothing but (M-EXC), the M-convexity of the
induced function f. The proof of Theorem 2.1 is based on the correctness of the algorithm
INDUCTION, which has the following property:

Theorem 2.2 Suppose we are given feasible flows ¢, with (0¢)” ==z, (0p)” =7 and a
vertex w € V~ with x(u) > Z(u). Then, the algorithm INDUCTION finds feasible flows ¢', @'
and a vertex v € V= with z(v) < Z(v) satisfying (0¢)” =2 — (xu)” + (x0) ™, (09)” =
T+ (Xu)i - (Xv)ia and
(1 @) a+ S0 T) + (1, & ha+ FT((08)T)
< (oAt FH(090)7) + (v, 8)a+ fT((08)7).

A proof of this theorem is given later in Section 4.

Proof of Theorem 2.1: Given any z,7 € domgzf and v € V~ with z(u) > Z(u), let
{¢or | k> 1},{@k | kK > 1} be the sequences of feasible flows such that (9¢x)™ =z, (9pr)” =
T, and that

kh_)rgo(<%¢k>A+f+((a<Pk)+)) = f(x), kli_)nolo(<%¢k>A+f+((8@k)+)) = f(2).

Such sequences exist necessarily from the definition of f.

By Theorem 2.2, for each pair of flows ¢, and @y (k > 1) there exist feasible flows ¢}, @),
and a vertex v, € V7~ with z(vg) < Z(vg) such that (0¢},)” =2 —(xu)” +(Xu,) s (0F,)” =
i_}_ (Xu)_ o (Xvk)_a and

(i at PO + (o Ba+ (O ~
< (Ym0 + FT(Opr)T) + (v, Br)a + fH((02k)T).
Since the vertex set V'~ is finite, there is at least one vertex v which appears infinite number
of times in the sequence {vy |k > 1}. Thus, we have an inequality

f@— ()™ + (X)) + @+ ()™ = (X))

nf{(v, ok a+ fT((0p)) [k> 1 = v} + inf{{y,&)a + [T(02)7) | k> 1,0, = v}
nf{(v, or)a+ fT((Opr) ") [k> 1,vp = v} +inf{{y,Gr)a + [T ((82k)T) | k> 1,0, = v}
f(@) + f(2).

IN N

We next analyze the induced function f when taking —oo. Theorem 2.1 reads as follows
when f(z)= 00 or f(z)=—00:

Lemma 2.3 Let z,7 € domgzf with either f(x) = —oo or f(T) = —oo. Then for
any uw € V- with z(u) > Z(u), there exists v € V~ with z(v) < Z(v) such that
T — Xu+ Xo € domgzf, T+ x, — x» € domgzf, and either f(x — xy + x») = —00 or
F@ + Xu — x0) = —00. n

This lemma reveals a behavior of induced functions taking —oo, which says that f(x) =
—oo for any point z in the ‘interior’ of domgzf. Since domgzf is an integral base set by
Theorem 2.1, there exists a submodular function p: 2"~ — Z U {400} such that

{zeZV |2(X)<p(X) (VX CV7), (V") =p(V7)} = domgz .

Compare the next theorem with the related result for the convolution operation [6, Theorem
5.8(2)], which is a special case of the network induction [4].

Theorem 2.4 Suppose the function f takes the value —oo. If f(xg) = —oo for some
xo € domg f, then

x
f(z) = —oo for all x € I(xg) =2’ € ZV™ | 2(
x

Proof. We show by induction on the integer k that for any zg € domgzf with f(zg) =
—oo and z € I(zg) with ||z — z¢lly- = X {|z(w) — zo(w)| | w € V™} =2k, f(z) is equal
to —oo. We assume that k& > 0, otherwise the claim is obvious.

First we prove when k=1, where x = x9— xs+ x: for some s,t € V7, s #t. We assert
that o' =2 — x5+ x¢ € domgzf. For any X C V~, if z(X) < p(X) then it is clear that
(X)) <z(X)+1<p(X). When z(X) = p(X), we have zo(X) = p(X) since z € I(x).
Therefore s € X if and only if ¢ € X, and we again have z/(X) = p(X). This concludes
that 2’ € domgzf. Thus, Lemma 2.3 applies to xy and z’. We observe that s is a unique
element in V— with z(s) > 2/(s) and ¢ is a unique element in V'~ with z(t) < /().
Since x =x9— xs+xt =2 + xs — xt, Lemma 2.3 for zo and z’ implies f(z)= —oc.

Next we assume that the claim holds for any j less than k(> 2). Apply Lemma 2.3
to x and =z, and obtain either f(zo— xu + X») = —00 or f(x + Xu — Xo) = —0C
for some w € V— with zg(u) > z(u) and v € V= with x0(v) < x(v). Moreover, if
2(X) = p(X)(= 20(X)) then (20— xu + xe)(X) = (+ xu — xe)(X) = p(X), which yiclds
x € I(xo — Xu + Xv) N I(x + Xu — Xo)- Since ||z — (zo — xu + Xo)|ly- = 2(k — 1) and
llz — (z + xu — Xv)|ly- =2, we obtain f(z) = —oo from the assumption. Hence the claim
holds for k. |

3 An Algorithm

This section presents the algorithm INDUCTION. Given feasible flows ¢,¢ with (9p)” =
z, (0p)” = and a vertex u € V~ with x(u) > Z(u), the algorithm INDUCTION
finds feasible flows ¢',@’ and a vertex v € V~ with z(v) < Z(v) satisfying (9¢')” =

T — (Xu)_ + (Xv)_a (895/)_ =+ (Xu)_ — (XU)_, and

(7@ a+ (0 + (v, @) a+ FH((02))
< (v @)a+ fH(0e)T) + (v, @)a + [T ((09)7).

For convenience, we assume without loss of generality that VUV~ = V. If this assump-

tion fails, extend the function f¥ : ZV' = R over ZVV as follows:
w4+ on_) [Tt (2°=0), + o gVE 0 o pV—(VTUV-)
f (I ,I)—{ 400 (xo;éo)’ (l‘ €Z y L €Z)a

and reset V' to V — V. Then we can fulfill the assumption VUV~ =V.
The algorithm maintains a set of four functions 1,7 € Z4, b,b € ZV and a vertex s € V

satisfying the following condition (FBS):

c(a) < () <e(a), c(a) <d(a) <Ta) (a€ A)

(lows 1,7 fulfill capacity constraints),

b)) =z (xu)~, (5)_ = +(w)”
(FBS) ((b), (b)— are almost equal to x,T),

(b, b are almost equal to boundaries 91, 615),
FH(y,0) + FT(1,b) < FT(p,0¢) + FT(,00)
(tuple (v,10,b,b,s) is ‘cheaper’ than flows ¢, §).

where F*t(,b) = (v,9)a + fH((b)T) for any ¢ € ZA4 b € ZY. We refer to such a tuple
(1, @Z,b 5 s) as a flow-base set. The functions b, b are called base functions and the vertex
s an imbalance vertex. Note that flows 1, w and an imbalance vertex s of some flow-base
set (,7,b,b,s) uniquely determine base functions b and b. _

At the beginning of the algorithm, we have the flow-base set (p,$,b,b,u) with base
functions b,g such as

(b)F = ()", (b)T = (9 <P) ; } (2)
B =z () 07 =2+ (xu)™

On the other hand, suppose that a flow-base set (w,i, b,g,v) satisfies v € V. Then,
1 and v have the following properties:

@)t (09)F € domgfT,
(8¢)_ =T — (Xu): +£Xv)_v (61/1)_ =T+ (Xu)_ - (Xv)_:
F*(y,00) + F*(¥,00) < FF(p,0p) + FF($,09).

Therefore, our aim is to obtain a flow-base set (v, U, b,b, v) such that v € V7 and z(v) <

z(v).
Our algorithm uses three operations in each iteration to update the current flow-base set.
Suppose that we have a flow-base set (1,1,b,b,s), and that there exists an arc a* € A

such that N B
a* = (s,8"), P(a*) >P(a®) or a"=(ss), Y(a*) <Y(a”) (3)

for some vertex s’ € V. Then, we update the flows 1, ¥ to ¢/, ¢ as follows:
If a* =(s,s), ¥(a*) > ¢(a*) then

P'(a*) =1(a") =1, ¥'(a") = (a") +1,
and if a* = (¢, s), ¥(a*) < ¥(a*) then
W (a*) = ¢(a*) + 1, ¢ (a*) = P(a*) - 1.

The flows on other arcs remain unchanged. We call this operation flow exchange. The flow
exchange on a* corresponds to pushing a unit flow on the arc a* for both 1 and
simultaneously. The following lemma is clear from the definition.

Lemma 3.1 Given a flow-base set (1,[),1;, b, b, s) and an arc a* with (3) for some s €V,
let 1',4’ be the flows obtained by the flow exchange on a*. Then, the next properties hold:

(', 4, b, b, s’) is a flow-base set,

min{y(a), §(a)} < ¥'(a) < max{e(a). ¥(a)} (a € A),
min{y(a), ¥(a)} < ¥'(a) < max{eb(a). ¥(a)} (a € A),
¥(a) +0/(a) = d(a) + d(a) (a€ A).

It may possibly happen that an arc becomes a candidate for the flow exchange in two
successive iterations. For example, suppose a* = (s,s') satisfies (a*) = ¢(a*) + 1. If
we perform the flow exchange on the arc a”, then s’ is the new imbalance vertex and
Y (a*) = '(a*) — 1 for the new flows ¢/, 7' Although a* becomes a candidate for the flow
exchange again, if we perform the flow exchange on a* then the resulting flows are same as
P, J Therefore, our algorithm prohibits the flow exchange on the same arc consecutively not
to return to the previous flow-base set.

We can always perform the flow exchange at the beginning of the algorithm, because

do(u) > 0p(u) and hence

{a€dulp(a) > gla)} U{a €5 u|pla) < Gla)} #0.

The second operation uses the simultaneous exchange property (M-EXC) of the M-convex
function f*. Let (i,%,b,b,s) be a current flow-base set with s € V*. If b(s) < b(s),
there exists a vertex s’ € Vt with b(s’) > b(s’) such that

FHOT + ()t =) D)+ FHOT — ()t + ()) < FHOT) + FH0)).
Let o =b+xs — Xs» U =b— x5+ xs. Then, the tuple (¢,1,b,b,s") obviously fulfills

(FBS). We call this operation for base functions base exchange.

Lemma 3.2 Let (1,1,b,b,s) be a flow-base set and b' = b+ ys — xs, V' = g_~XS + x5 be
the base functions obtained by the base exchange for b and b'. Then, (,%,b,0,s") is also
a flow-base set. [|

The algorithm prohibits two successive base exchanges not to return to the previous flow-base
set, which may happen when b(s) = b(s) +1 and b(s') = b(s') —

The last operation, called crossover, plays the most important role in the algorithm. An
imbalance vertex changes as our algorithm iterates, but the same vertex can be an imbalance
vertex many times. Therefore, the algorithm may fall into a loop. The operation crossover
is performed when a vertex becomes an imbalance vertex twice, and makes our algorithm to
stop in finite iterations.

Given two flow-base sets (¢, ¥,b,b,s) and (¢/,¢/,V,V,s) with a same imbalance vertex
s € V, the crossover of (1,1,b,b,s) and (¢/,¢/,b,b,s) yields another flow-base set
(", " 6", V", s), which is defined as

(¢// J// b// ’b“// S) _ (¢ "‘Z:a b,ZNI, 3) if F+(¢>b) + F+(TEIa§l) < F+(¢/:bl) + F+(1E’§)’
T WL, b,8) i FE(,b) + FT (LY > FE(WLY) + FE(a,b).

The following property is simple but crucial in the algorithm.

Lemma 3.3 For given two flow-base sets (1,1,b,b,s) and (¢, ,b,b,s) with a same
imbalance vertex s € V, we suppose the following conditions:

b #£ and) £ 9, (4)
min{y)(a), (a)} <¥'(a) < max{(a),¥(a)} (a € A), (5)
min{t(a), ¥(a)} < ¢'(a) < max{v(a), ¥(a)} (a € A), (6)
P(a) +¢(a) =¢'(a) +4'(a) (a € A). (7)

Then, the crossover of (w,@b,g, s) and (Y, 0,0,V ,s) yields a flow-base set (4", 4", b". ", s)
with |[" —¢"||a <[t —¢||a.

Proof. It is obvious that (¢”,4",b",b",s) satisfies the condition (FBS) other than
FH@" ") + FH (", 0") < F*(p,d¢) + F*($,09), which is given by

Fr@" ") + FY@" 0"y < (1/2)(FF (4,b) + FH (4, b) + FT (', b) + FH (@, V)
< FT(p,00) + F*(5,00).

The conditions (5), (6) imply that

[4"(a) —4"(a)| < [¢(a) =(a)| (a€ A).

Furthermore, there exists an arc a* € A with ¥(a*) # ¢'(a*) from (4), and we also have

¥(a*) # ¢/ (a*) from (7). Combined with the conditions (5) and (6), we obtain
[4(a*) =4/ (a*)] = [¢/(a*) — d(a")] < [(a®) — P(a"),
which provides the relation |[[¢ —¢"|[4 < ||t — 9]| 4. |

The algorithm is described below.
Algorithm INDUCTION
Step 0: Put i =1, ¢ = ¢, U = p,81 = u. Set by, by as (2) and go to Step 1.
Step 1: Execute the procedure UPDATE with the input (v;,v;,b;,b;,5;) and obtain the
output (Yit1, Yig1, biv1,bit1, Siv1). Go to Step 2.
Step 2: If s;41 € V7 and z(sj+1) < Z(sij+1), then output s;y1 and stop. Otherwise, set
i=1+1 and go to Step 1.
[End of Algorithm INDUCTION]
Procedure UPDATE
Input: a flow-base set (¢, ¢, dN,J, t) with teV—{we V™ |z(w) < z(w)}.
Output: a flow-base set (¢',{’,d’,d',t") satisfying either (U-1), (U-2) or (U-3) when t # u,
and either (U-1) or (U-3) when ¢ = u, where

(U-1) ¢ e{we V™ |z(w) < z(w)},
(U-2) &' =wu, [I¢"=¢lla < [I¢ = Clla, - ~
(U-3) eV —A{weV™|z(w) <z(w)}, [[¢"=l[a <[I¢=Clla-

(Note that w is the vertex given as the input of the algorithm INDUCTION.)

Step UO: Set (Cl,fl,dl,cjl,ul) = (c,Z, d,g,t), k=1, and go to Step Ul.

Step U1l: Execute the following.

Case 1: If uy € {we V™| z(w) < F(w)}, then output (Ci,Cp,di, dy,us) and stop.

Case 2: If ¢t #u and ug = u, then output ((x, Ce, dy, Jk,uk) and stop.

Case 3 [crossover]: If k> 1 and wu, =u; for some j with 1 <j <k —1, then perform the

8

Figure 1: Initial flows

crossover of (Cj,gj,dj, gj,uj) and (Ci, Co» di, dpg, ug,) to obtain (¢”, ¢, d",d", u;). Output
(Cﬂa Cﬂa dl/a dl/a uk) and stop.
Case 4 [flow exchange]: If Cases 1 — 3 do not hold and

({a € 5% up | Gu(a) > G(a)} U{a € 6wy | (rla) < Gu(a)}) — {en—1 (if defined)} # 0,

then select an arc eg from this arc set and perform the flow exchange on eg. Let (g1, ka
be the resulting flows, and wugy; the vertex such that ey = (ug,upr1) or ex = (up41,ug).
Put dyi1 = dg,dpiq =di, and k=k+ 1. Repeat Step Ul.

Case 5 [base exchange]: If Cases 1 — 4 do not hold, then it holds that wu; € V*t and
di(ur) < dp(uy) (Theorem 4.1 validates this claim). Perform the base exchange to find a
vertex up 1 € VT with dp(ups1) > Jk(uk+1) such that

P+ Oca)™ = (e) D)+ LAY = ()™ + (ans) ™) S (AT + 14 () ™).

Put Co1 = Gy Grot1 = G dip1 = di Xy — Xujor1 s ds1 = di — Xuy +Xuppqs and k=k+1.
Repeat Step Ul.
[End of Procedure UPDATE]

To illustrate the algorithm INDUCTION, we consider a numerical example. The underlying
graph G has the vertex set

vV = vtuvT,

V+ = {Ul,UQ,US,U4,U5,’UG}, Vo= {U)l,’wg,UJ3,’lU4},

and the arc set
A:{(Uiij) |i:1a"'767]:174}

where each arc has upper capacity 1, lower capacity 0, and weight 0. Figure 1 shows the input
of the algorithm, i.e., two feasible flows ¢,$ with (9p)” = x, (0¢)” = T and a vertex
u=w; € V- with z(u) > Z(u). Arcs with ¢(a) =1 and @(a) =1 are drawn by solid and
dotted lines, respectively, and others are missing.

Figures 2, 3, and 4 show changes of flow-base sets when the algorithm INDUCTION is applied.
Each figure corresponds to the first, second, or third iteration of INDUCTION, respectively.

Figure 2 shows the sequence of flow-base sets produced by the procedure UPDATE in the
the first iteration of INDUCTION. Before calling UPDATE, we set by and by as shown in Figure
2 (1-1) according to the equation (2). In the first iteration of UPDATE, the arc a = (v1,w:)
entering the imbalance vertex w; satisfies ¢i(a) < ¢i(a). We perform flow exchange on this

+

(c1)(d)

(=4,

1! e

0

flow exc.

(1-5)

o o}
—)
<
[8)
s}
a ; It
y— o N A
5 8 g g $
3 2 8
£ o M = &
= = <
=
Z
& §
— —
))
io o o =)

crossover

d:=ds

=5

L

(1-10) output of proc. A

Figure 2: First iteration of INDUCTION

10

+
el

ol o
e
Wwon
gL

flow exc.

~
(b P o o o mE

(1) {0 (1) {0
of i1 0]i1l
0| i0 ol :0
0| il ol i1
11 flow exc. 1]i1
40 W10
—~ i base exc. P
0| i1 ol i1
0l i1 of i1
0| i0 ol :0
1li0 1|i0
111 flow exc. 1l i1
OB W0

' (2-5) output of proc. A

Figure 3: Second iteration of INDUCTION

arc and obtain a new flow-base set as Figure 2 (1-2). Then the imbalance vertex moves to v;.
Since

({a € 8%v1 | Gla) > Ga)} Ufa€d v | Gla) < G(a)}) = {(vi,w)} =0,

base exchange is applied to obtain the next flow-base set. The procedure UPDATE proceeds
in this way while applying flow exchanges and base exchanges. After the eighth iteration,
we get a flow-base set as shown in Figure 2 (1-9) which has the same imbalance vertex wvs
as in Figure 2 (1-5). Since the condition of Case 3 is fulfilled, crossover is performed at this
point and then UPDATE terminates with output (¢”,¢”,d”,d", v). This output satisfies the
condition (U-3), and the algorithm proceeds to the next iteration.

In the second iteration of INDUCTION, the procedure UPDATE is again called and yields
a flow-base set as shown in Figure 3 (2-5) in its fourth iteration. Since the flow-base set
meets the condition of Case 2, UPDATE terminates in the following iteration with the output
(C5, C5, d5, d5, wl) Satisfying (U—2) .

The algorithm INDUCTION terminates at the third iteration as shown in Figure 4. The
imbalance vertex is wy € V'~ in the last iteration of UPDATE, which meets the condition of
Case 1. Therefore, UPDATE outputs a flow-base set satisfying the condition (U-1) and hence
INDUCTION finally stops with output wjy.

11

di:=bs
81:=53
flow exc.
e M)
0:1 — (1] io
0]i1 0|i1
ofio0 ol io
1(:0 1] i0
1f:1 base exc. 1]:1
————— .
O — 0 i1ne

o p o o r)
‘|—\l—‘OO|—lO‘

(3-4) output of proc. A

Figure 4: Third iteration of INDUCTION

4 Correctness and Time Complexity

This section proves Theorem 2.2, i.e., the correctness of the algorithm, and analyses the time

complexity.

4.1 Correctness of the Procedure UPDATE

In this subsection, we show that the procedure UPDATE correctly finds the valid output.
First of all, we show the validity of Case 5 in Step Ul.

Lemma 4.1 Suppose that (Q,a;,di,cz;,ui) satisties (FBS) for any i (1 <i < k). If neither
Case 1, 2, 3, nor 4 happens in the k-th iteration, then uy € V™ and dg(ug) < di(ug).

Proof. Since Case 4 does not happen, it holds that
{a € 6tuy | Grla) > Gula)} U{a € 0wk | Gla) < Cp(a)} C {ex 1 (if defined)}. (8)

Here the LHS of (8) is equal to e;_; if and only if Case 4 happens in the (k—1)-st iteration
and |Gy 1(ex—1) —Cr-1(ex—1)| =1 holds. Thus,

Gk (ur) — 0Ck(ur) =Y _{Ck(a) a) | a€dstu}t = {Gla) — Gla) |acd)} <1,

12

which, together with the equations
Ok (ug) = di(ug) + 1, A (ug) = dy(uy) — 1,
provides dy(uy) < dj(uy,). Furthermore, we see from the condition (FBS) that
(dr)” = (dr)” = (= 7) —2(xu) ",
and therefore
u € {w € V | di(w) < di(w)} S VT U{w e V™ | z(w) < E(w)} U {u}.

We have uy & {w € V™ | z(w) < T(w)} since Case 1 does not occur. Hence, we have only to
show wuy # u. To the contrary assume that wg = u. Then, we obtain that

(0G) " = (dp)” + () =2 (0G) = (d)” = (xu) =2
The inequality AC(ug) = z(u) > Z(u) = 0, (ug) yields that
{a € 67w | Gla) > Gu(a)} U{a € 67wy | Gila) < Gila)} # 0.
Therefore, either Case 2, 3, or 4 happens necessarily, which is a contradiction. [|

We require the following two lemmas to establish the validity of the output.

Lemma 4.2 If Case 5 happens in some iteration, then it does not appear in the next iteration.

Proof. Suppose that Case 5 happens in the (k—1)-st iteration. We see from dj_1(ug) >
d~k_1(uk) + 1 that dk(uk) > Jk(uk) — 1. Thus,
S {G(a) = Cula) [a € 67wt — > {Cila) — Gula) | a € 5 uy}
= OCk(ur) — 0Ck(ur) = (diwg) +1) = (di(u) = 1) > 1.
This means B _
{a € 6Tup | Gla) > Ge(a)} Ufa € 0w | Gela) < Gr(a)} # 0.

Hence Case 5 does not appear in the k-th iteration. [|

Lemma 4.3 All arcs in {e; | i > 1, Case 4 happens in the i-th iteration} are distinct.

Proof. To the contrary assume that there exists an arc e; with e, =e; for some 7 < k.
From the definition of e, we have i+ 2 < k. Since Case 3 does not happen in the k-th
iteration, it holds that wy ¢ {u;, u;+1}. But it contradicts the assumption eg = e;. [|

We now prove the validity of the output of the procedure UPDATE.

Lemma 4.4 Ifeither Case 1, 2, or 3 happens, then the output (¢, .d.d, s') satisfies (U-1),
(U-2), or (U-3), respectively.
Proof. For Cases 1 and 2, the claim stands immediately from Lemmas 3.1 and 3.2.

When Case 3 happens, both (Cj,Cj,dj,dj,Uj) and (Cg, Ck, di, di, uy) satisfy wup = Uj
and j+ 2 < k. From Lemmas 4.2 and 4.3, the arc set

F ={e; | j <i <k, Case 4 happens in the i-th iteration}

13

is nonempty and all arcs in F are distinct. We have (i(a) # (j(a), Crla) # gj(a) for each
a€ F, and ((a) =(j(a), ¢x(a) = (j(a) for each a & F. Lemma 3.1 yields

min{%’(d)a@ ()} < ¥n(a) < max{y;(a), @'(G)} (a € 4),
min{y;(a), j(a)} < ¢rla) < max{y;(a), 9i(a)} (a € 4),
Yr(a) +r(a) = ¥j(a) +j(a) (a € A).

Thus, we can apply Lemma 3.3, and obtain (FBS) and the relation [[¢” — C"la < 11— Clla
for the output (¢”,¢"”,d",d”,u;) in Case 3.

The vertex set {uj,---,ux} increases by exactly one element as Step Ul repeats. Hence,
the procedure UPDATE stops in at most |V|+1 iterations, which concludes that the procedure
UPDATE finds a valid output in finite time.

4.2 Correctness of the Algorithm INDUCTION

From the correctness of the procedure UPDATE, it is obvious that we have a desired vertex v
at the termination of INDUCTION, which happens in Step 2 with a vertex s;11 € V'~ such that
2(sip1) < Z(sit1), i.e., (U-1) holds for (thiy1,%is1,bis1.bip1,5i41). For the correctness of the
algorithm, it is sufficient to derive that the algorithm stops in a finite number of iterations.
When the condition (U-3) holds for the output (;41, TZZ‘+]_, bi+1,gi+1, si+1) of the procedure
UPDATE, we obtain the inequality

[Wir1 = Pizalla < [= dilla — 1.
Hence, (U-3) appears at most ||¢ — @||4 times. If (U-2) holds, we have

[Wi1 — Yisalla < [[¥i — ¥illa

and (U-2) never happens in the next iteration since s;4+1 = u. Thus, the number of iterations
is at most 2|[¢ — @[] 4.
This concludes the proof of Theorem 2.2.

4.3 Time Complexity

We first analyze the time complexity of the procedure UPDATE. Let 2 be the time required
for the evaluation of f. B B
The procedure maintains a current flow-base set ((x, (x, dk, dg, ur) and the arc set

E'={e; | i > 1, Case 4 happens in the i-th iteration}.

It also uses a data structure for representing the vertex set {u1,---,ux} so that we can decide
in constant time whether w € {uy,---,u;} for any vertex w € V. The values f*((d;)")
and ft((d;)") are restored for each i = 1,---, k. Note that the size of the arc set E' and
the vertex set {ui,---,ur} is at most the number of the iteration and therefore at most |V].

By using the data structures above, Step U0 can be performed in O(|A|) time. Cases 1
and 2 of Step Ul can be done in constant time. Case 3 performs the crossover and finishes
in O(|V]) time by using a current flow-base set (Ci, Gy, dis djs,ug,), the arc set E’, and the
restored values f*((d;)*) and f+((c@)+) for some j. To execute Case 4 in constant time,
we also compute the arc set

{a €5 w | Gla) > Gila)} U{a€d w] Gla) < (ula)}

14

for all vertex w € V in advance at the beginning of the procedure. This preprocessing
requires O(|A|) time. Each iteration of the procedure checks whether

({a € 6y | Gu(a) > Cla)y U{a € 6 up | Cula) < Cu(a)}) — {ex—1 (if defined)} # 0

and updates these arc sets in constant time. Case 5 takes O(|V]€2) time to find the vertex
uk+1. As mentioned in the previous subsection, the number of iterations is at most |[V|+ 1,
and the total time complexity of the procedure is O(|V]?Q + | A|).

Next we analyze the time complexity of the algorithm INDUCTION. The number of itera-
tions is at most 2|[¢ — @||a and each iteration requires the time for the procedure UPDATE.
Thus, the time complexity of the algorithm INDUCTION is O((|V[?Q + |A|)||¢ — &|4)-

Theorem 4.5 The algorithm INDUCTION runs in O((|V[?Q + |A])||¢ — @||a) time. ||

Acknowledgement

1 am grateful to Kazuo Murota and Maiko Shigeno for discussions and their valuable comments
on the manuscript.

References

[1] A. W. M. Dress and W. Wenzel, Valuated matroid: A new look at the greedy algorithm,
Appl. Math. Lett. 3 (1990) 33-35.

[2] A. W. M. Dress and W. Wenzel, Valuated matroids, Adv. Math. 93 (1992), 214-250.

[3] S. Fujishige, Submodular functions and optimization, (Annals of Discrete Mathematics 47,
North-Holland, Amsterdam, 1991).

[4] K. Murota, Convexity and Steinitz’s exchange property, Advances in Mathematics, to
appear. Extended abstract in: W. H. Cunningham, S. T. McCormick, M. Queyranne
ed. Integer Programming and Combinatorial Optimization (LNCS 1084, Springer-Verlag,
1996) 260-274.

[5] K. Murota, Submodular flow problem with a nonseparable cost function, Report No. 95843-
OR, Forschungsinstitut fiir Diskrete Mathematik, Universitat Bonn (1995).

[6] K. Murota, Discrete convex analysis, RIMS preprint, No. 1065, Kyoto University (1996).

15

