Minimization of an M-convex Function*

Akiyoshi SHIOURA†

Abstract

We study the minimization of an M-convex function introduced by Murota. It is shown that any vector in the domain can be easily separated from a minimizer of the function. Based on this property, we develop a polynomial time algorithm.

Keywords: matroid, base polyhedron, convex function, minimization.

1 Introduction

M-convex function, recently introduced by Murota [8, 9, 10], is an extension of valued matroid due to Dress and Wenzel [1, 2] as well as a quantitative generalization of (the integral points of) the base polyhedron of an integral submodular system [4]. M-convexity is quite a natural concept appearing in many situations; linear and separable-convex functions are M-convex, and more general M-convex functions arise from the minimum cost flow problems with separable-convex cost functions. M-convex function enjoys several nice properties which persuade us to regard it as “convexity” in combinatorial optimization. Let \(V \) be a finite set with cardinality \(n \). A function \(f : \mathbb{Z}^V \to \mathbb{R} \cup \{+\infty\} \) is said to be M-convex if it satisfies

\[
(M\text{-EXC}) \quad \forall x, y \in \text{dom} f, \forall u \in \text{supp}^+(x - y), \exists v \in \text{supp}^-(x - y) \text{ such that } f(x) + f(y) \geq f(x - \chi_u + \chi_v) + f(y + \chi_u - \chi_v),
\]

where \(\text{dom} f = \{x \in \mathbb{Z}^V \mid f(x) < +\infty\} \), \(\text{supp}^+(x - y) = \{w \in V \mid x(w) > y(w)\} \), \(\text{supp}^-(x - y) = \{w \in V \mid x(w) < y(w)\} \), and \(\chi_w \in \{0, 1\}^V \) is the characteristic vector of \(w \in V \). For an M-convex function \(f \) with \(\text{dom} f \subseteq \{0, 1\}^V \), \(-f\) is a valuation on a matroid in the sense of [1, 2]. The property (M-EXC) implies that \(\text{dom} f \) is a base polyhedron.

In this paper, we consider the problem of minimizing an M-convex function. While the concept of M-convexity is quite new and no efficient algorithm is known yet, several polynomial

*Research Report No. 20, Department of Mechanical Engineering, Sophia University, 1997. (version: 17/11/97)
†Department of Mechanical Engineering, Sophia University, 7-1 Kioi-cho, Chiyoda-ku, Tokyo 102, Japan, shioura@kea.me.sophia.ac.jp.
time algorithms are proposed for special cases of M-convex functions. It is well-known that a
linear function can be easily minimized over a base polyhedron by a simple greedy algorithm
(see [4]). A strongly-polynomial time algorithm was proposed by Fujishige [3] for a separable-
convex quadratic function, and weakly-polynomial time algorithms were given by Groenevelt [6]
and Hochbaum [7] for a general separable-convex function. It was reported that there is no
strongly-polynomial time algorithm for a general separable-convex function [7].

The aim of this paper is to develop an efficient algorithm for minimizing an M-convex function.
Since the local optimality is equal to the global optimality, an optimal solution can be found by
a descent method, which does not necessarily terminate in polynomial time. Instead, we propose
a different approach based on the property that any vector in the domain can be efficiently
separated from a minimizer of the function, which is shown later. Each iteration finds a certain
vector in the current domain, and divides the domain so that the vector and an optimal solution
are separated. By a clever choice of the vector, the size of the domain reduces in a certain ratio
iteratively, which leads to a weakly-polynomial time algorithm.

2 Theorems

Throughout the paper we suppose $f : Z^V \to R \cup \{+\infty\}$ is an M-convex function with bounded
domain. The global minimality of an M-convex function is characterized by the local minimality.

Theorem 2.1 ([8, 10]) For any $x \in \text{dom } f$, $f(x) \leq f(y)$ ($\forall y \in Z^V$) if and only if $f(x) \leq f(x - \chi_u + \chi_v)$ ($\forall u, v \in V$).

Any vector in dom f can be easily separated from some minimizer of f.

Theorem 2.2 (i) For $x \in \text{dom } f$ and $v \in V$, let $u \in V$ satisfy $f(x - \chi_u + \chi_v) = \min_{s \in V} \{f(x - \chi_s + \chi_v)\}$. Set $x' = x - \chi_u + \chi_v$. Then, there exists $x^* \in \text{arg min } f$ with $x^*(u) \leq x'(u)$.

(ii) For $x \in \text{dom } f$ and $u \in V$, let $v \in V$ satisfy $f(x - \chi_u + \chi_v) = \min_{t \in V} \{f(x - \chi_u + \chi_t)\}$. Set $x' = x - \chi_u + \chi_v$. Then, there exists $x^* \in \text{arg min } f$ with $x^*(v) \geq x'(v)$.

Proof. We prove the first claim only. Let $x^* \in \text{arg min } f$ with the minimum value of $x^*(u)$,
and to the contrary suppose $x^*(u) > x'(u)$. By (M-EXC), there exists $w \in \text{supp}^{-}(x^* - x')$ such
that $f(x^*) + f(x') \geq f(x^* - \chi_u + \chi_w) + f(x + \chi_v - \chi_w)$. The assumptions for x^* and x' imply
$x^* - \chi_u + \chi_w \in \text{arg min } f$, a contradiction.

Corollary 2.3 Let $x \in \text{dom } f$ with $x \not\in \text{arg min } f$, and $u, v \in V$ satisfy $f(x - \chi_u + \chi_v) = \min_{s, t \in V} \{f(x - \chi_s + \chi_t)\}$. Then, there exists $x^* \in \text{arg min } f$ with $x^*(u) \leq x(u) - 1$, $x^*(v) \geq x(v) + 1$.

Let $B \subseteq Z^V$ be a base polyhedron, i.e., B satisfies the next property:

(B-EXC) $\forall x, y \in \text{dom } f$, $\forall u \in \text{supp}^+(x - y)$, $\exists v \in \text{supp}^{-}(x - y)$ such that $x - \chi_u + \chi_v$, $y + \chi_u - \chi_v \in B$.

2
Assume B is bounded. We define the narrowed base polyhedron $N_B(\subseteq B)$ of B as follows. For each $w \in V$, define

$$l_B(w) = \min_{y \in B} \{ y(w) \}, \quad u_B(w) = \max_{y \in B} \{ y(w) \}, \quad (1)$$

$$l'_B(w) = [(1 - 1/n)l_B(w) + (1/n)u_B(w)], \quad u'_B(w) = [(1/n)l_B(w) + (1 - 1/n)u_B(w)]. \quad (2)$$

Then, N_B is defined as $N_B = \{ y \in B \mid l'_B(w) \leq y(w) \leq u'_B(w) \ (\forall w \in V) \}$. We see from definition that N_B is a base polyhedron if it is not empty.

Theorem 2.4 $N_B \neq \emptyset$.

Proof. Let $\rho : 2^V \to \mathbb{Z}$ be the submodular function with $\rho(\emptyset) = 0$ and $B = \{ y \in \mathbb{Z}^V \mid y(X) \leq \rho(X) \ (\forall X \subseteq V), y(V) = \rho(V) \}$. Note that $l_B(w) = \rho(V) - \rho(V - w)$, $u_B(w) = \rho(w)$ ($\forall w \in V$). It suffices to show the following (see [4, Theorem 3.8]):

(i) $l'_B(X) \leq \rho(X)$ ($\forall X \subseteq V$),

(ii) $u'_B(X) \geq \rho(V) - \rho(V - X)$ ($\forall X \subseteq V$).

Since (ii) can be shown similarly, we prove (i) only. Let $X \subseteq V$ with cardinality k. We claim

$$k\rho(X) + \sum_{v \in X} \{ \rho(V - v) - \rho(V) \} \geq \sum_{v \in X} \{ \rho(v) + \rho(V - v) - \rho(V) \}. \quad (3)$$

Indeed, we have

$$\text{LHS} = k\rho(X) + \sum_{v \in X} \sum_{u \in X - v} \{ \rho(V - u) - \rho(V) \} + \sum_{v \in X} \{ \rho(V - v) - \rho(V) \}$$

$$\geq k\rho(X) + \sum_{v \in X} \{ \rho(V - (X - v)) - \rho(V) \} + \sum_{v \in X} \{ \rho(V - v) - \rho(V) \} \geq \text{RHS},$$

where the inequalities are by the submodularity of ρ. Since the LHS is nonnegative, k in (3) can be replaced by $n (\geq k)$. Thus,

$$\rho(X) \geq (1 - 1/n) \sum_{v \in X} \{ \rho(V) - \rho(V - v) \} + (1/n) \sum_{v \in X} \rho(v) \geq l'_B(X). \quad \blacksquare$$

For $x \in B$ and $u, v \in V$, define

$$\tilde{c}_B(x, u, v) = \max\{ \alpha : \alpha \in \mathbb{Z}, x + \alpha(\chi_v - \chi_u) \in B \} \geq 0,$$

which is called the exchange capacity associated with x, v and u. For any α with $0 \leq \alpha \leq \tilde{c}_B(x, u, v)$, we have $x + \alpha(\chi_v - \chi_u) \in B$. The next theorem shows that a vector in N_B can be computed efficiently by using the exchange capacity.

Theorem 2.5 (cf. [4, Theorem 3.27]) A vector in N_B can be obtained by evaluating the exchange capacity associated with B at most n^2 times, provided a vector in B is given.
Proof. Suppose we are given a vector \(x_0 \in B \) with either \(x_0(u) < l_B'(u) \) or \(x_0(u) > u_B'(u) \) for some \(u \in V \). It suffices to show that the following algorithm finds \(x \in B \) such that

\[
l_B'(w) \leq x(w) \leq u_B'(w) \text{ if } l_B'(w) \leq x_0(w) \leq u_B'(w) \quad (\forall w \in V - u), \quad l_B'(u) \leq x(u) \leq u_B'(u)
\]

by evaluating the exchange capacity at most \(n \) times. Assume w.l.o.g. that \(x_0(u) > u_B'(u) \), \(n \geq 2 \) and \(V = \{u, v_1, v_2, \ldots, v_{n-1}\} \).

Step 0: Set \(x := x_0 \), \(i := 1 \).
Step 1: If \(x(v_i) < u'_B(v_i) \), set \(\alpha := \min\{\hat{c}_B(x, v_i, u), x(u) - u'_B(u), u'_B(v_i) - x(v_i)\} \),
\[
x := x + \alpha(\chi_{v_i} - \chi_u).
\]
Step 2: If \(i = n - 1 \) or \(x(u) = u'_B(u) \) then stop; otherwise \(i := i + 1 \) and go to Step 1.

To the contrary assume \(x(u) > u'_B(u) \) for the vector \(x \) obtained by the algorithm. Let \(x_* \) be any vector in \(NB \). Since \(x(u) > u'_B(u) \geq x_*(u) \), (B-EXC) implies that the existence of \(v_i \in V - u \) with \(x' = x - \chi_u + \chi_{v_i} \in B \) holds for some \(i \) with \(x(v_i) < x_*(v_i) \leq u'_B(v_i) \). Let \(x_i \) be the vector \(x \) after Step 1 of the \(i \)-th iteration. Then, it holds \(x'(u) < x_i(u), x'(w) \geq x_i(w) \) \((\forall w \in V - u) \) and \(x'(v_i) > x_i(v_i) \). Hence, \(\hat{c}_B(x_i, v_i, u) = 0 \). On the other hand, we have \(x_i + \chi_{v_i} - \chi_u \in B \) by applying (B-EXC) to \(x' \), \(x_i \) and \(v_i \), a contradiction.

The values \(l_B(w) \) and \(u_B(w) \) defined by (1) can be computed in the similar way.

Theorem 2.6 For any \(w \in V \), the values \(l_B(w) \) and \(u_B(w) \) can be computed by evaluating the exchange capacity associated with \(B \) at most \(n \) times, provided a vector in \(B \) is given.

3 Algorithms

Theorem 2.1 immediately leads to the following algorithm.

Algorithm Steepest-Descent

Step 0: Let \(x \) be any vector in dom \(f \).
Step 1: If \(f(x) = \min_{s, t \in V} \{f(x - \chi_s + \chi_t)\} \) then stop. \(x \) is a minimizer.
Step 2: Find \(u, v \in V \) with \(f(x - \chi_u + \chi_v) = \min_{s, t \in V} \{f(x - \chi_s + \chi_t)\} \).
Step 3: Set \(x := x - \chi_u + \chi_v \). Go to Step 1.

This algorithm always terminates since the function value of \(x \) decreases strictly in each iteration. However, there is no guarantee for the polynomiality of the number of iterations.

The next algorithm maintains a set \(B \) (\(\subseteq \) dom \(f \)) which is a base polyhedron containing a minimizer of \(f \). It reduces \(B \) iteratively by exploiting Corollary 2.3 and finally finds a minimizer.

Algorithm Domain-Reduction

Step 0: Set \(B := \text{dom}\ f \).
Step 1: Find a vector \(z \in N_B \).

Step 2: If \(f(z) = \min_{x \in V} \{ f(x - \chi_x + \chi_y) \} \) then stop.

Step 3: Find \(u, v \in V \) with \(f(x - \chi_u + \chi_v) = \min_{x \in V} \{ f(x - \chi_x + \chi_y) \} \).

Step 4: Set \(B := B \cap \{ y \in Z^V \mid y(u) \leq x(u) - 1, y(v) \geq x(v) + 1 \} \). Go to Step 1.

We analyze the number of iterations of the algorithm. Denote by \(B_i \) the set \(B \) in the \(i \)-th iteration, and let \(l_i(w) = l_{B_i}(w) \), \(u_i(w) = u_{B_i}(w) \) for each \(w \in V \). It is clear that \(u_i(w) - l_i(w) \) is monotonically nonincreasing w.r.t. \(i \). Furthermore, we have the following:

Lemma 3.1 \(u_{i+1}(w) - l_{i+1}(w) < (1 - 1/n) \{ u_i(w) - l_i(w) \} \) for \(w \in \{ u, v \} \), where \(u, v \in V \) are the elements found in Step 3.

Proof. We show the case \(w = u \). Let \(x \in N_{B_i} \) be the vector chosen in Step 1. Then,

\[
u_{i+1}(u) - l_{i+1}(u) \leq x(u) - 1 - l_i(u) \leq [(1/n)l_i(u) + (1 - 1/n)u_i(u) - 1 - l_i(u)] = (1 - 1/n) \{ u_i(u) - l_i(u) \}.
\]

The proof for the case \(w = v \) is similar and omitted.

Let \(L = \max_{w \in V} \{ u_1(w) - l_1(w) \} \).

Lemma 3.2 The algorithm \textsc{Domain Reduction} terminates in \(O(n^2 \log L) \) iterations.

Proof. Since the value \(u_i(w) - l_i(w) \) \((w \in V)\) is a nonnegative integer, the algorithm stops if \(u_i(w) - l_i(w) < 1 \) for all \(w \in V \). Let \(k \) be the minimum integer with \((1 - 1/n)^k \{ u_1(w) - l_1(w) \} < 1 \). Suppose \(u_1(w) \neq l_1(w) \) and \(n \geq 2 \). Then,

\[
k \leq -\ln \{ u_1(w) - l_1(w) \} / \ln(1 - 1/n) + 1 \leq n \ln \{ u_1(w) - l_1(w) \} + 1.
\]

by a well-known inequality \(\ln z \leq z - 1 \) \((\forall z > 0)\). Thus the claim follows.

In the following, we explain how to perform each step, especially how to find a vector in \(N_B \).

We assume that a vector \(x_0 \in \text{dom} f \) and the value \(L \) are given in advance.

We maintain the set \(B \) by using two vectors \(a, b \) with \(-a(w), b(w) \in Z \cup \{ +\infty \} \) \((\forall w \in V)\) as \(B = \text{dom} f \cap \{ y \in Z^V \mid a(w) \leq y(w) \leq b(w) \} \). Maintenance of \(a, b \) is easy: initially set \(a(w) = -\infty, b(w) = +\infty \) \((\forall w \in V)\), and update only the values \(a(v) \) and \(b(u) \) to \(x(v) + 1 \), \(x(u) - 1 \), respectively in Step 4 of each iteration.

When finding a vector in \(N_B \), we first compute the values \(l_B(w), u_B(w) \) \((\forall w \in V)\) defined by (1), which can be done by \(O(n^2) \)-time evaluation of the exchange capacity associated with \(B \) from Theorem 2.6. The exchange capacity can be computed in \(O(\log L) \) time by the binary search since \(0 \leq \check{c}_B(x, u, v) \leq L \) \((\forall x \in B, \forall u, v \in V)\). Then, we compute \(l'_B(w), u'_B(w) \) \((\forall w \in V)\) defined by (2) by using floor and ceiling operations. Note that floor and ceiling operations can be performed easily since \(n \) is the denominator of each value for which floor or ceiling is operated.
After computing the values $l_B'(w), u_B'(w)$ we can find $x \in N_B$ by $O(n^2)$-time evaluation of the exchange capacity. Thus, Step 1 can be performed in $O(n^2 \log L)$ time.

The other steps require $O(n^2)$-time evaluation of f.

Theorem 3.3 If a vector in $\text{dom } f$ and the value L are given, the algorithm **DOMAIN REDUCTION** finds a minimizer of f in $O(n^4 \log^2 L)$ time.

References

