A Linear Time Algorithm for Finding a k-Tree-Core

Akiyoshi SHIOURA * and Takeaki UNO *

(November, 1994)

1 Introduction

Let $T = (V, E)$ be a tree with n vertices. For two vertices u and v, we define the distance $d(u, v)$ as the number of edges on the unique path between u and v, and $d(u, S) = \min_{v \in S} d(u, v)$ for $S \subseteq V$. Given a positive integer k, we consider the problem of finding a k-leaf-subtree (subtree which contains exactly k leaves) S which minimizes $D(S) = \sum_{v \in V} d(v, S)$, the sum of the distances from all vertices to S. Such a k-leaf-subtree is called a k-tree-core of T.

The problem of finding a k-tree-core is one of several types of location problems for a single facility on a tree which minimizes the sum of the distance. The oldest, posed by Hakimi [2], is the problem of finding a vertex called a “node median” or a “distance centroid”, which minimizes the sum of distance. This may be extended naturally to paths, and a path which minimizes the total distance is called a “core” or “path median”, and linear time algorithms for finding a core have been proposed by Morgan and Slater [5], and Peng et al. [6]. Minieka and Patel [3] added a constraint on the length of a path, and defined a “core of length l” as a path of length l which minimizes the total distance. This problem is extended to a tree-shaped facility in [4]. On the other hand, the problem of finding a k-tree-core, which we treat here, adds a different constraint namely such that the subtree must have exactly k leaves. This problem was first considered by Peng et al.[6] who gave two algorithms for finding a k-tree-core whose time complexities are $O(kn)$ and $O(n \log n)$. The latter algorithm can find k-tree-cores for all k in $O(n \log n)$.

In this paper, we propose a linear time algorithm for finding a k-tree-core. Our algorithm is a modified version of the $O(kn)$-algorithm of Peng et al. and is very simple while theirs are little complicated. It first finds a core in linear time, then finds $k-2$ paths needed to construct a k-tree-core, and adds them. We show that these added paths have some special properties, which allows us to find them in $O(n)$ time. Peng et al. showed similar properties, but our lemmas and proofs are simple and clear. Furthermore, with a slight modification, our algorithm can find k-tree-cores for all k in linear time.

We also consider a k-tree-core in weighted tree. By using our algorithm, we can find a k-tree-core in linear time, but it takes $O(n \log n)$ time to find k-tree-cores for all k. We show that $\Omega(n \log n)$ is the lower bound for solving the latter problem, and that therefore our algorithm is optimal for this.

*Department of Information Sciences, Tokyo Institute of Technology, 2-12-1 Oh-okayama, Meguro-ku, Tokyo 152, Japan. shioura@is.titech.ac.jp, uno@is.titech.ac.jp
In Section 2, we give some notation and definitions, and show some basic properties about distance. In Section 3, we prove some useful properties for our algorithm, and propose a linear time algorithm. Finally we discuss \(k \)-tree-cores in a weighted tree in section 4.

2 Preliminaries

Let \(T = (V, E) \) be a tree. \(P_{uv} \) denotes the unique path which connects two vertices \(u \) and \(v \). The distance between two vertices \(u \) and \(v \) is defined by the number of edges in the path \(P_{uv} \), and is denoted by \(d(u, v) \). For a vertex \(u \) and a subtree \(S \) in \(T \), the distance between \(v \) and \(S \) is defined by \(d(v, S) = \min_{u \in S} \{d(u, v)\} \).

Here we define some measure of “centrality” of subtrees in \(T \). For a vertex \(v \), the distance of \(v \), denoted by \(D(v) \), is defined as the sum of the distances between \(u \) and \(v \) for all vertices \(u \in V \), i.e., \(D(v) = \sum_{u \in V} d(u, v) \). Similarly, for a subtree \(S \) in \(T \), \(D(S) = \sum_{u \in V} d(u, S) \) is called the distance of \(S \).

A core of a tree \(T \) is a path which minimizes the distance \(D(P) \) among all paths \(P \) in \(T \). A \(k \)-tree-core is a subtree which minimizes the distance \(D(S) \) among all subtrees \(S \) containing exactly \(k \) leaves. We can see that a core is a 2-tree-core. It is easily shown that each leaf of \(k \)-tree-core is also a leaf of \(T \). Note that a \(k \)-tree-core is not always uniquely defined.

A vertex \(v \notin S \) is adjacent to a subtree \(S \) if there exists an edge \((u, v) \) with \(u \in S \). For a vertex \(r \in T \), and a vertex \(v \neq r \), we consider ‘rooting’ \(T \) at \(v \). We denote the subtree (of this rooted tree) rooted at \(v \) as \(T_r(v) \). More generally, for a subtree \(S \) and a vertex \(v \notin S \), let \(T_S(v) \) be the subtree in \(T \) induced by the vertex-set \(V_S(v) = \{x | P_{vx} \cap S = \emptyset \text{ and } d(x, S) \geq d(v, S)\} \).

If we regard \(T \) as a tree ‘rooted’ at \(S \), \(T_S(v) \) can be seen as a subtree rooted at \(v \).

If a subtree \(S \) becomes larger, the distance \(D(S) \) decreases strictly. So, we consider decreasing \(D(S) \) by adding a path \(P \) to a subtree \(S \). The following equation holds for the decrease of the distance by addition of a path to a subtree.

Property 2.1 Let \(P \) be a path in \(T \) and \(v \) be one of endpoints of \(P \). Let \(S \) be any subtree of \(T \) which intersects \(P \) only at the vertex \(v \). Then,

\[
D(S) - D(S \cup P) = D(v) - D(P)
\]

Proof:

\[
D(S) - D(S \cup P) = \sum_{u \in V} \{d(u, S) - d(u, S \cup P)\} = \sum_{u \in T_S(v)} \{d(u, v) - d(u, P)\} + \sum_{u \notin T_S(v)} \{d(u, S) - d(u, S)\} = \sum_{u \in T_S(v)} \{d(u, v) - d(u, P)\} + \sum_{u \notin T_S(v)} \{d(u, v) - d(u, v)\} = \sum_{u \in V} \{d(u, v) - d(u, P)\}
\]

This means that for any subtree \(S \) which intersects \(P \) at only one endpoint \(v \), \(D(S) - D(S \cup P) \) has the same value. We call this value the distance saving of \(v \) and \(P \), and denote it by \(DS(v, P) \). The distance saving has the following property.
Property 2.2 Let v and w be two distinct vertices, and v' be the vertex in P_{vw} adjacent to v. Then,

$$DS(v, P_{vw}) = DS(v', P_{vw'}) + |T_v(v')|$$

Proof:

$$DS(v, P_{vw}) = D(v) - D(P_{vw})$$
$$= D(v) - \{D(P_{vw}) - DS(v', P_{vw'})\}$$
$$= DS(v, P_{vw'}) + DS(v', P_{vw'})$$
$$= DS(v', P_{vw'}) + |T_v(v')|$$

By this property, we can compute $DS(v, P_{vw})$ from $DS(v', P_{vw'})$ immediately. It is one of the keys of our algorithm.

3 An algorithm for finding a k-tree-core

In this section, we propose an algorithm for finding a k-tree-core. We assume that k is less than the number of leaves in T.

Our algorithm is based on the $O(kn)$ algorithm by Peng et al.[6]. Their algorithm finds a core at first, and adds $k-2$ paths iteratively. It takes $O(n)$ time for finding each path, hence $O(kn)$ time is required for finding all $k-2$ paths. Our algorithm also finds a core in the first step. After that, we construct a set of paths, and by adding $k-2$ elements selected from this set to the core, we get a k-tree-core. We can execute this step in $O(n)$, thus a linear time algorithm for finding a k-tree-core may be realized. We show some lemmas, which were first proved by Peng et al.[6].

Lemma 3.1 [6] For any k-tree-core $S \neq T$, there exists a $(k+1)$-tree-core S' such that $S \subset S'$.

By using this lemma, we can construct a $(k+1)$-tree-core from a given k-tree-core S_k by adding a path which minimizes the distance. Here we consider the path which maximizes $DS(v, P)$. For a subtree S in T and a vertex $v \notin S$, let u be the vertex adjacent to v such that $d(u, S) = d(v, S) - 1$. When a path P maximizes $DS(u, P)$ among all paths P_{uw} with $w \in T_S(v)$, we call P the local rooted core of v with respect to S and denote it by $LRC(v, S)$. The next property is implied by Property 2.2.

Property 3.2 Let S be a subtree in T and v be a vertex which maximizes $DS(LRC(v, S))$ among all vertices not in S. Then, v is adjacent to S.

From the definition of local-rooted-core, the previous lemma can be rewritten as follows.

Corollary 3.3 For any k-tree-core S, let P be a local-rooted-core $LRC(v, S)$ which maximizes the distance saving among all vertices v adjacent to S. Then, $S \cup P$ is a $(k+1)$-tree-core.

Now, we consider how to find a local-rooted-core $LRC(v, S)$. Suppose v is not a leaf of T. Let u be a vertex which is adjacent to v and satisfies $d(u, S) = d(v, S) - 1$. Let $\{v_1, \ldots, v_r\}$ be vertices which are adjacent to v and satisfy $d(v_i, S) = d(v, S) + 1$. Such vertices surely
exist because \(v \) is not a leaf. From the definition of local-rooted-cores, the following relation is implied.

\[
DS(LRC(v, S)) = \max\{DS(u, P_{uw})| w \in T_S(v)\}
= \max\{DS(v, P_{vw})| w \in T_S(v)\} + |T_S(v)|
= \max\{\max_{1 \leq i \leq r}\{\max\{DS(v, P_{vw})| w \in T_S(v_i)\}\}, DS(v, P_{vw})\} + |T_S(v)|
= \max_{1 \leq i \leq r}\{DS(v, LRC(v_i, S))\} + |T_S(v)|
\]

By using this relation, we can compute a local-rooted-core \(LRC(v, S) \) recursively.

Algorithm Find\(LRC(v, S, T) \) (Find \(LRC(v, S) \) for \(v \notin S \) and subtree \(S \subset T \)).

Step 0: Let \(u \) be the vertex which is adjacent to \(v \) and satisfies \(d(u, S) = d(v, S) - 1 \).

Step 1: If \(v \) is a leaf of \(T \) then return the path \(P_{ac} \). Stop.

Step 2: If \(v \) is not a leaf of \(T \), then let \(\{v_1, \ldots, v_r\} \) be vertices which are adjacent to \(v \) and which satisfy \(d(v_i, S) = d(v, S) + 1 \). Find a local-rooted-core \(LRC(v_i, S) \) for each vertex \(v_i \).

Step 3: Choose the path \(P^* \) with the largest value of distance saving.

Step 4: Return the path \(P^* \cup \{u, v\} \). Stop.

Moreover, we can also compute all local-rooted-cores \(LRC(x, S) \) for \(x \in T_S(v) \) simultaneously as byproducts. Now we consider the time complexity of this algorithm. Let \(Time(v) \) be the time required to compute \(LRC(v, S) \). Then,

\[
Time(v) = \sum_{i=1}^{r} Time(v_i) + O(\deg(v))
= O(\sum_{u \in T_S(v)} \deg(u))
= O(|T_S(v)|)
\]

Hence, it takes \(O(n) \) time to compute local-rooted-cores \(LRC(v, S) \) for all vertices \(v \notin S \). The algorithm of Peng et al. iteratively computes local-rooted-cores \(k \) times, and takes \(O(kn) \) time to find a \(k \)-tree-core.

In our algorithm for finding a \(k \)-tree-core, we compute a core \(C \) first. Then we make a set of local-rooted-cores \(LS \) by using the algorithm Find\(LRC(v, S, T) \). Here we consider local-rooted-cores produced by the algorithm Find\(LRC(v, S, T) \). When we find \(LRC(v, S) \), we find local-rooted-cores \(LRC(v_i, S) \) for \(i = 1, \ldots, r \). One of them \(LRC(v_i, S) \) is included in \(LRC(v, S) \), and the others intersect \(LRC(v, S) \) at only one vertex \(u \). We define \(LS \) as the set of maximal local-rooted-cores, i.e., \(LS = \{LRC(v, C) | LRC(v, C) \notin LRC(w, C), \forall w \neq v\} \).

We also define the **body** of \(LRC(v, C) \) as the sub-path \(LRC(v, C) \cap T_C(v) \).

Property 3.4
1. Each vertex \(v \in T \setminus C \) is contained in exactly one body of a local-rooted-core \(L \in LS \).
2. For any local-rooted-core \(L \in LS \) and any vertex \(v \notin L \) adjacent to the body of \(L \), a local-rooted-core of \(v \) is contained in \(LS \).
Figure 1: The set of local-rooted-cores LS

Proof: Clearly, any vertex $w \in T \setminus C$ is contained in at least one local-rooted-core of LS. If w is contained in two bodies of $LRC(v_1, C)$ and $LRC(v_2, C)$, then $LRC(v_1, C) \subset LRC(v_2, C)$ or $LRC(v_2, C) \subset LRC(v_1, C)$. Hence, by definition of LS, LS contain the maximal local-rooted-core which contains $LRC(v_1, C)$ (and $LRC(v_2, C)$).

For a local-rooted-core $L \in LS$, let $v \not\in L$ be any vertex adjacent to the body of $L \in LS$, and $L' \in LS$ be the unique local-rooted-core which contains v in its body. Suppose $L' \neq LRC(v, C)$ and let $u \in L$ be the vertex which is adjacent to v. Then u is also contained in the body of L', which is a contradiction. Therefore, $L' = LRC(v, C)$.

The next lemma ensures the correctness of our algorithm.

Lemma 3.5
Let L_i be the element in LS with i-th largest value of distance saving. Then, $S_k = \bigcup_{i=1}^{k-2} L_i \cup C$ is a k-tree-core.

Proof: If $k = 2$ then this statement holds obviously. So, for $k > 2$, we assume that S_{k-1} is a $(k-1)$-tree-core and show that S_k is k-tree-core.

From Corollary 3.3, S_k is a k-tree-core if and only if L_{k-2} maximizes the distance saving among all local-rooted-cores $LRC(v, S)$ such that v is adjacent to S_{k-1}. For any vertex v, if v is adjacent to core C, or v is adjacent the body of some local-rooted-core $LRC(x, C)$ and not in $LRC(x, C)$, then LS has a local-rooted-core $LRC(v, C)$ in it. Therefore, for each
vertex v adjacent to S_{k-1}, $\text{LRC}(v, C) \in LS \setminus \{L_i \mid i = 1, 2, \ldots, k-3\}$, and if $\text{LRC}(v, C) \in LS \setminus \{L_i \mid i = 1, 2, \ldots, k-3\}$ then $v \notin S_{k-1}$. From Property 2.2, L_{k-2} maximizes the distance saving among all local-rooted-core $\text{LRC}(v, S)$ such that v is adjacent to S_{k-1}, since L_{k-2} has the largest value of distance saving in $LS \setminus \{L_i \mid i = 1, 2, \ldots, k-3\}$. Hence, S_k is a k-tree-core.

Now, we formulate our algorithm.

Algorithm Find k-tree-core(k, T)

Step 1: Find a core C.

Step 2: Compute LS.

Step 3: Sort elements in LS in the decreasing order of the distance saving by using radix sort.

Step 4: Output C and the $k-2$ largest elements in LS.

Theorem 3.6

Algorithm Find k-tree-core(k, T) outputs a k-tree-core of a tree T in $O(n)$ time and uses $O(n)$ space.

Proof: Steps 1 and 2 can be done in $O(n)$ time. In Step 3, we sort all elements of LS. Radix sort takes only $O(d(n + e))$ time and $O(n + e)$ space if each number is a positive integer less than e^d, hence Step 3 can be done in $O(n)$ time, because the distance saving of any path is a positive integer less than n^2. The size of the output is at most the size of a given tree T, and Step 4 takes $O(n)$ time. Hence, this algorithm runs in $O(n)$ time.

In Steps 1, 2, and 4, the memory requirement is proportional to the size of a given graph. By the above argument about radix sort, we use only $O(n)$ space when we sort all elements in LS. Therefore, the space complexity is $O(n)$.

From lemma 3.5, the differences between a k-tree-core and a $(k-1)$-tree-core is the local-rooted-core L_{k-2}. Therefore, in the previous algorithm, if we output all local-rooted-cores L_1, L_2, \ldots instead of outputting only L_1, \ldots, L_{k-2}, we can reconstruct all k-tree-cores for $k \geq 2$. That is, we can find all k-tree-cores for any k in linear time.

4 k-tree-cores in weighted graphs

In this section, we discuss the problem of finding a k-tree-core in weighted tree. We consider a tree $T = (V, E)$ such that each edge $e \in E$ has an arbitrary positive length $l(e)$ and each vertex $v \in V$ has an arbitrary positive weight $w(v)$. We define the distance $d(u, v)$ between vertices u and v by the length of the path P_{uv}, i.e., $d(u, v) = \sum_{e \in P_{uv}} l(e)$. The distance between one vertex v and one subtree S is defined by $d(v, S) = \min_{u \in S} d(u, v)$. The distance of a subtree S is defined as the value $D(S) = \sum_{v \in V} w(v)d(v, S)$. By using this distance, we can define a k-tree-core similarly to the unweighted case. Thus we can find a k-tree-core in the same manner except for the sorting of the elements of LS. In a weighted graph, we cannot use radix sort. However, this is no problem because we do not have to sort all elements in LS to find the $k-2$ largest elements. In fact, the k-best selection algorithm suffices, and we can find a k-tree-core in $O(n)$ time.

Next, we consider finding k-tree-cores for all k. In this case, we must sort all elements in LS and it takes $O(n \log n)$ time to find k-tree-cores by using our algorithm. Here we
show that this is equal to the lower bound of time complexity to output each k-tree-core of a weighted tree for all k, by reducing the sorting problem to it. It is well-known that the problem of sorting n numbers requires $\Omega(n \log n)$ time. We exhibit the fact that the sorting problem is transformable in linear time to the problem of outputting each k-tree-core, and prove the lower bound of our problem. For a given sequence of real numbers $\{r_1, \ldots, r_n\}$, we consider a star-shaped tree graph G which has vertices $\{v_0, \ldots, v_{n+2}\}$ and edges (v_i, v_0) for $i = 1, 2, \ldots, n + 2$. We assume that all numbers $r_i (i = 1, \ldots, n)$ are distinct. In this graph, vertices $\{v_1, ..., v_{n+2}\}$ are leaves. We define the weight of each edge (v_i, v_0) as r_i for $i \leq n$, and as a sufficient large value, e.g., $\max_j \{r_j\} + 1$ for $i > n$ (see Figure 2). Clearly, a core C of the graph G is the path from v_{n+1} to v_{n+2}. The path consisting of only one edge (v_i, v_0) is a local-rooted-core of vertex $v_i \notin C$. Let S_k be a k-tree-core of G. We can easily see that S_k contains edges in $\{(v_i, v_0) \mid i = 1, \ldots, n + 2\}$ with k-th largest weight, and $S_{k+1} \setminus S_k$ contains the edge (v_0, v_i) with k-th largest weight. If we output each k-tree-core S_k for all k by outputting differences $S_{k+1} \setminus S_k$, we can sort numbers $\{r_1, \ldots, r_n\}$. This means that it requires $\Omega(n \log n)$ time to find differences between S_k and S_{k+1} for all k.

Acknowledgment

We are greatly indebted to Prof. Akihisa Tamura of the University of Electro-Communications and Dr. Yoshiko Ikebe of Tokyo Institute of Technology for valuable comments and help on this manuscript.

References

