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ABSTRACT

In scheduling with controllable processing times the actual processing time of each job
is to be chosen from the interval between the smallest (compressed or fully crashed) value

and the largest (decompressed or uncrashed) value. In the problems under consideration,
the jobs are processed on a single machine and the quality of a schedule is measured by
two functions: the maximum cost (that depends on job completion times) and the total
compression cost. Our main model is bicriteria and is related to determining an optimal
trade-off between these two objectives. Additionally, we consider a pair of associated
single criterion problems, in which one of the objective functions is bounded while the
other one is to be minimized. We reduce the bicriteria problem to a series of parametric
linear programs defined over the intersection of a submodular polyhedron with a box. We
demonstrate that the feasible region is represented by a so-called base polyhedron and
the corresponding problem can be solved by the greedy algorithm that runs two orders
of magnitude faster than known previously. For each of the associated single criterion
problems, we develop algorithms that deliver the optimum faster than it can be deduced
from a solution to the bicriteria problem.

Keywords: Single machine scheduling; Controllable processing times; Polymatroid;
Base polyhedron

1. Introduction

In scheduling with controllable processing times, the actual durations of the jobs
are not fixed in advance, but have to be chosen from a given interval. Assigning a
small value to the actual processing time normally leads to an earlier completion of
the job. However, the choice of a smaller value of the processing time is associated
with some cost. The main issue in scheduling with controllable processing times
is a trade-off between a good scheduling performance achieved by compressing the
values of the processing times and the cost of that reduction. The surveys [12, 14]
give good reviews of the research in this area.

Formally, the problems that we study in this paper can be described as follows.
The jobs of the set N = {1, 2, . . . , n} are simultaneously available at time zero to
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be processed on a single machine. For each job j ∈ N , its actual processing time
pj has to be chosen from an interval [p

j
, pj ], where the values p

j
and pj are given

in advance. If job j ∈ N is assigned the processing time pj , we say that the job
has been compressed or crashed by hj = pj − pj , and refer to hj as the compression
amount of job j.

A usual scheduling requirement says that the machine cannot process more than
one job at a time. Preemption is not allowed. A schedule for processing the jobs of
set N can be given by the split-values pj and hj that satisfy

pj = pj + hj (1)

and

p
j
≤ pj ≤ pj . (2)

for each job j ∈ N and by a sequence π according to which the jobs are processed
by the machine. The processing of the job sequenced in position π(k), i.e., at the
k-th position in permutation π, is completed at time

Cπ(k) = Cπ(k−1) + pπ(k),

where for completeness Cπ(0) = 0.
Processing a job j incurs the following two costs: (i) the penalty for completing

job j ∈ N at time Cj given by the cost function fj(Cj), and (ii) the compression
cost αjhj . In this paper, we assume that each fj is a non-decreasing piecewise
linear function. Moreover, as in [8], we assume that each function is explicitly
represented. This means that for each function fj(t) we are given the number of its
break-points denoted by mj ; the sorted list of the break-points p

j
= t0j < t1j < · · · <

t
mj

j ≤
∑

j∈N pj ; the pieces of the function Q
(k)
j t + R

(k)
j for t ∈ (tk−1

j , tkj ], where

1 ≤ k ≤ mj and Q
(k)
j > 0. We denote the total number of pieces of all functions fj

by L, i.e., L =
∑n

j=1 mj .
The overall quality of a schedule is measured in the terms of the maximum

processing cost

F = max
j∈N

fj(Cj) (3)

and the total compression cost

K =
∑

j∈N

αjhj . (4)

Function F is of a very general nature. Here we only mention its two special
cases widely studied in the scheduling literature: the makespan F = maxj∈N Cj if

fj(Cj) = Cj

and the maximum tardiness if

fj(Cj) = max{Cj − dj , 0} (5)
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defines the tardiness of job j with respect to a given due date dj .
In the bicriteria problem, we want to determine a trade-off between the pro-

cessing cost F of the form (3) and the compression cost K of the form (4). A
solution to this bicriteria problem is obtained by the set of Pareto optimal points;
see [17, Chapters 3 and 4] for definitions and a state-of-the-art survey of multi-
criteria scheduling. Here, we recall that a schedule S ′ is called Pareto optimal if
there exists no schedule S ′′ such that F (S′′) ≤ F (S′) and K(S′′) ≤ K(S′), where
at least one of these relations holds as a strict inequality. Having found the set of
Pareto optimal solutions, usually in the form of a so-called efficiency frontier given
by its break-points, the decision-maker may choose a schedule according to various
combinations of the two criteria, e.g., their weighted sum; see [12, 17]. Extending
standard notation for scheduling problems, we denote the bicriteria problem by
1|pj = p̄j − hj |(F,K). Here, the first field indicates that the jobs are processed
on a single machine. We write ‘pj = p̄j − hj ’ in the middle field to stress that the
processing times are controllable so that the given times p̄j can be compressed. The
last field specifies the functions to be minimized simultaneously.

Although the described bicriteria problem is the main target of this study, we
also discuss associated problems to minimize one of the functions, while the value
of the other function is bounded. In the problem with limited processing cost, the
goal is to minimize the total compression cost K =

∑
αjhj , provided that the

processing cost of each job does not exceed a given value U ; we denote this problem
by 1|pj = p̄j − hj , fj(Cj) ≤ U |

∑
αjhj . In the problem with limited compression

cost, the goal is to minimize the maximum processing cost F , provided that the
total compression cost does not exceed a given value V ; we denote this problem by
1|pj = p̄j − hj ,

∑
αjhj ≤ V | F .

Notice that the optimal solution to the bicriteria problem given in the form of
an efficiency frontier delivers a solution to either of the associated single criterion
problems; thus, the purpose of study of these single criterion problems is to develop
algorithms that run faster than the algorithm that solves the bicriteria problem.

To illustrate the problems under consideration, below we present several appli-
cations.

Make-or-Buy Decision-Making. Often a production manager realizes that
either the existing production capabilities are insufficient to fulfill all orders inter-
nally in time or the cost of work-in-process of an order exceeds a desirable amount.
Such an order can be partly subcontracted. Obviously, subcontracting incurs addi-
tional cost but that can be either compensated by quoting realistic deadlines for all
jobs or balanced by a reduction in internal production expenses. The make-or-buy
decisions should be taken to determine which part of each order is manufactured
internally and which is subcontracted. Here the internal production facility is the
machine. For each order j ∈ N , the value of pj is interpreted as the processing
requirement, provided that the order is manufactured internally in full, while p

j

is a given mandatory limit on the internal production. Further, pj = pj − hj is
the chosen actual time for internal manufacturing, where hj shows how much of
the order is subcontracted and αjhj is the cost of this subcontracting. The cost
function fj(Cj) is the work-in-process cost of the order. Finally, the function F
of the form (3) represents the maximum cost of processing those orders and their
parts that are accepted for internal manufacturing, while the function K expresses
the total subcontracting cost.
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Imprecise Computation. We illustrate this application by discussing problem
1|pj = p̄j − hj , fj(Cj) ≤ U |

∑
αjhj ; see [11] for a review of research in this

problem area. In image processing, to obtain a full quality picture p̄j time units
are required, and at least p

j
time units are required for mandatory processing. The

actual value pj = pj − hj of the processing time is sufficient to obtain a picture
of acceptable quality. In this case αjhj measures the loss of quality or an error
of processing. Assuming that fj(Cj) is the tardiness defined by (5), the problem
1|pj = p̄j − hj , fj(Cj) ≤ U |

∑
αjhj is that of finding a schedule that minimizes

the total error, provided that the processing of each image is finished no more than
U time units later than its due date; typically U = 0, so that the resulting schedule
is deadline feasible.

Below we give a brief overview of the known results on single machine scheduling
with controllable processing times. For problem 1|pj = p̄j−hj |(F,K) with arbitrary
non-decreasing totally ordered cost functions fj that satisfy fj(t) ≤ fj+1(t) for all t
and all 1 ≤ j ≤ n−1, a procedure for finding the efficiency frontier on a grid of any
given refinement is described by Van Wassenhove and Baker [20]. If the functions
fj are piecewise linear, the procedure requires O(n3) time, even if fj is the tardiness
defined by (5).

For problem 1|pj = p̄j −hj |(F,K) with general non-decreasing cost functions fj ,
Tuzikov [18] develops an algorithm that finds an ε-approximation of the efficiency
frontier.

Hoogeveen and Woeginger [8] solve problem 1|pj = p̄j−hj |(F,K) with arbitrary
non-decreasing piecewise linear functions fj in O(n4L2) time where L is the total
number of pieces of all functions fj , j ∈ N . Notice that in the model considered
in [8] the lower bounds on the processing times are all zero, i.e., p

j
= 0 for all

j ∈ N . Observe also that Hoogeveen and Woeginger do not give any details of how
to implement the pre-processing stage and do not analyze the running time of that
stage. In this paper, we explain the details of the preprocessing stage and analyze
its running time; see Section 2.

We are not aware of any prior work regarding a single criterion problem 1|pj =
p̄j − hj ,

∑
αjhj ≤ V | F. As far as problem 1|pj = p̄j − hj , fj(Cj) ≤ U |

∑
αjhj

is concerned, it can be reduced to that of finding a schedule that is feasible with
respect to some deadlines induced by the constraints fj(Cj) ≤ U . This approach,
originally due to [20], is outlined in Section 4.1. The resulting problem can be
denoted by 1|pj = p̄j −hj , Cj ≤ dj |

∑
αjhj , where we write ‘Cj ≤ dj ’ in the middle

field to stress that each job j must be completed by its deadline dj . In a symmetric
and mathematically equivalent version of this problem, denoted by 1|pj = p̄j −
hj , rj , dj = d|

∑
αjhj , a job j becomes available at time rj and all jobs must be

completed by a common deadline d. In either problem, the processing time can be
compressed to guarantee a deadline feasible schedule and the total compression cost
is minimized. These two equivalent single criterion problems are the most studied
scheduling problems with controllable processing times; see, e.g., [8, 9, 12, 15, 21].
Each of these problems is solvable in O(n log n) time, see the algorithms in [8, 9, 15];
however, only the latter paper provides all necessary implementation details.

It has been observed in [15, 16] that various single criterion and bicriteria prob-
lems with controllable processing times can be reduced to optimization problems
over polymatroids and generalized polymatroids. This gives us an opportunity
that arises very seldom in scheduling research: instead of designing a purpose-built
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method to tackle an individual problem (and often this and only this problem) we
can come up with a general framework of handling the whole range of scheduling
problems of this type. Such an approach allows us to use powerful techniques of
submodular optimization; see [5], [10], [13, Chapter 44] for books and surveys in this
area. In this paper, we take further advantage from employing the polymatroidal
approach. The main benefits include a clear justification of the greedy-like algo-
rithms and a possibility to adapt known computationally efficient solution methods.
As a result, we arrive at the solution procedures that are easier to justify and faster
to run that those developed earlier. For example, all prior algorithms aimed at solv-
ing bicriteria problems with controllable processing times are based on searching for
the candidate break-points of the efficiency frontier one by one; our algorithm pre-
sented in Sections 2 and 3 finds the break-points by solving a number of parametric
linear programming problems.

The remainder of this paper is organized as follows. In Section 2, we discuss
the bicriteria problem and reduce it to a series of parametric linear programs over
regions described by nested constraints. In Section 3, we present a novel general
method that reduces the obtained linear programs to optimization problems over so-
called base polyhedra. We use this fact to design a fast polynomial-time algorithm
for finding the trade-off curve for the original bicriteria problem. Section 4 is devoted
to the pair of conjugate single criterion problems related to the bicriteria problem.
In Subsection 4.1, we address the problem of minimizing the compression cost under
a limited processing cost and show how this problem can be solved by the methods
developed in [6, 7] for resource allocation problems. Subsection 4.2 studies the
single criterion problem of minimizing the maximum processing cost subject to
a constraint on the decompression cost. We give a fast solution procedure that is
closely linked to the other algorithms of this paper. The conclusions are summarized
in Section 5.

2. Bicriteria Problem: Mathematical Programming Formulation

In this section, we reformulate the bicriteria problem 1|pj = p̄j − hj |(F,K) in
terms of a sequence of parametric linear programming (LP) problems with nested
constraints. Recall that the objective functions F and K are defined by (3) and (4),
respectively, and each function fj(Cj) is non-decreasing and piecewise linear with
mj break-points with the number of all break-points equal to L.

Following [8], we adopt a natural graphical interpretation of the problem. Imag-
ine that the graphs of the functions y = fj(t) are drawn in the coordinate plane with
t as the horizontal independent variable and y as the vertical dependent variable.
Variable t can be thought of as a time variable related to the completion times Cj of
jobs j ∈ N . By condition, all jobs cannot be completed earlier than time

∑n
j=1 pj

and later than time
∑n

j=1 p̄j . Determine the following sets of special points in the
plane:

• Set S1 consists of all break-points of all piecewise linear functions fj(t);

• Set S2 consists of all intersection points of the graphs of two functions fi and
fj for i ∈ N, j ∈ N, i 6= j;

• Set S3 consists of all intersection points of the graphs of functions fj with the
vertical lines t =

∑n
j=1 pj

and t =
∑n

j=1 p̄j .
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Fig. 1. An example with n = 3 jobs with proper numbering in stripe [yk, yk+1]

It is clear that |S2| does not exceed O(L2). The theorem below gives a tight
upper bound on a possible number of points in set S2.

Theorem 1 Given n piecewise-linear functions fj, each consisting of mj linear
pieces and defined over the interval [0, T ], the number of intersection points of the
graphs of any two functions fi and fj for i = 1, . . . , n, j = 1, . . . , n, i 6= j, does
not exceed (n− 1)L− n(n− 1)/2, where L =

∑n
j=1 mj .

Although Theorem 1 is of interest in its own right, we move its proof to the
Appendix, in order not to affect the flow of logic of this section.

It is obvious that |S1| = L and |S3| = O(n), while Theorem 1 implies that
|S2| = O(nL). Split the coordinate plane into horizontal stripes by drawing a
horizontal line through each special point. Denote the total number of the obtained
stripes by `, where ` = O(n + L + nL) = O(nL). A stripe is defined by two lines
y = yq−1 and y = yq, where

y0 < y1 < · · · < y`,

and we will refer to the stripe between y = yq−1 and y = yq as [yq−1, yq].
A stripe [yq−1, yq ] can be put into correspondence to a class of schedules for

which (i) the value of the processing cost F lies within the interval [yq−1, yq ]; (ii)
each cost function fj(t) is represented by a linear expression; and (iii) the jobs are
processed according to the same sequence obtained by scanning the segments within
the stripe starting from the left-most segment. See Figure 1.

The process of finding all stripes [yq−1, yq], q = 1, . . . , `, will be called the pre-
processing. Below we describe an efficient algorithm for finding all stripes.
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Algorithm Preproc

Step 1. Find the sets S1 and S3. Determine the increasing sequence ỹ0 < ỹ1 <
· · · < ỹm of the ordinates of all points in S1 ∪ S3.

Step 2. For each r from 1 to m do the following:

(a) For each function fj , j ∈ N , identify the linear piece that represents the
function in the interval [ỹr−1, ỹr].

(b) Find intersections of the line segments of functions fj , j ∈ N , in the inter-
val [ỹr−1, ỹr], either by the algorithm by Balaban [1] or by the algorithm
by Bently and Ottmann [2].

(c) Store the ordinates of the found intersection points in the increasing order
between ỹr−1 and ỹr.

Step 3. Output the stripes [yq−1, yq], q = 1, . . . , `, by renumbering the values
ỹ0, ỹ1, . . . , ỹm together with those found in Step 2.

Lemma 1 Algorithm Preproc can be implemented in O(nL logn) time.

Proof. Since each function fj is explicitly represented, as described in Section 1,
and is non-decreasing, it follows that for each function fj , j ∈ N , its break-points are
given as a list that is sorted in increasing order of their ordinates. Let σ1(j) be the
increasing sequence of the ordinates of the break-points of function fj , j ∈ N . Using
a merge-sort algorithm we can merge all these sequences into a single increasing
sequence σ1. Since there are n sequences to be merged that contain in total L
elements, the sequence σ1 can be found in O(nL) time.

An increasing sequence σ3 of the ordinates of the points that belong to set S3

can be found in O(n log n). To complete Step 1, we need to merge the sequences σ1

and σ3, which requires O(L + n) = O(L) time. Thus, Step 1 can be implemented
in O(nL) time.

For r = 1, the linear pieces that represent the functions fj in the interval
[ỹr−1, ỹr] are the first pieces of the functions. For any other r, a function fj is
either represented by the same piece as in the previous interval or by the next piece
in its explicit representation. Thus, for each r, Step 2(a) can be implemented in
O(n) time.

For an r, 1 ≤ r ≤ m, suppose that there exist kr points in S2 in the interval
[ỹr−1, ỹr]. Notice that each function fj is linear in each interval [ỹr−1, ỹr], therefore
in Step 2(b) either Balaban’s algorithm [1] or the Bently-Ottmann algorithm [2] for
finding intersections of line segments can be applied for identifying points of set S2

with the ordinates from [ỹr−1, ỹr].
Recall that Balaban’s algorithm finds the intersecting pairs of ν line segments

in O(ν log ν + λ) time, where λ is the number of intersecting pairs, while the
Bently-Ottmann algorithm requires O(ν log ν+λ log ν). However, unlike the Bently-
Ottmann algorithm, the algorithm by Balaban does not output the found inter-
section points in increasing order of their ordinates. This means that if for each
r, 1 ≤ r ≤ m, Balaban’s algorithm is used in Step 2(b), then it takes O(n log n+kr)
time and we additionally need to sort the found points in Step 2(c), which requires
extra O(kr log kr) time. Since kr ≤ n2, we conclude that using Balaban’s algorithm
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we can run Step 2 in O(n log n + kr logn) time for each r, 1 ≤ r ≤ m. If the
Bently-Ottmann algorithm is used, the same running time is achieved.

Due to Theorem 1, the time complexity of Steps 2 and 3 can be estimated as

O

(
m∑

r=1

(n logn+ kr logn)

)
= O

(
mn logn+

(
m∑

r=1

kr

)
log n

)

= O(|S1 ∪ S3|n logn+ |S2| logn)

≤ O(Ln logn+ nL logn) = O(nL logn),

as required. 2

To find the efficiency frontier for the bicriteria problem 1|pj = p̄j −hj |(F,K) we
need to find a set of Pareto-optimal points for each stripe.

Let [y, y] be an arbitrary stripe. For each job j ∈ N the cost function fj(t) =

Q
(k)
j t + R

(k)
j for some k, 1 ≤ k ≤ mj , takes the values within the stripe. We may

write fj(t) = Qjt+ Rj dropping the reference to the index k of the corresponding
linear piece. For each job j ∈ N and a small positive ε, determine the intersection
points (tj , y) and (tεj , y − ε) of the graph of the function fj(t) = Qjt+Rj with the
horizontal lines y = y and y = y− ε, respectively. If required, renumber the jobs in
such a way that t1 ≤ t2 ≤ · · · ≤ tn, breaking ties by assigning a smaller number to
the job with a smaller value tεj . Call this numbering proper for this stripe; see the
numbering of jobs in stripe [y, y] = [yq−1, yq ] shown in Figure 1, where the tie for
jobs 1 and 2 is broken as described.

Suppose that we know the actual processing times pj of all jobs in some Pareto-
optimal schedule for a fixed y ∈ [y, y]. For some job j ∈ N , let t′j be the value such
that y = fj(t

′
j) = Qjt

′
j +Rj . Notice that the value of t′j can be seen as the due date

for job j, so that if job j completes at time Cj ≤ t′j then the cost value fj(Cj) is no
more than y. Under the proper numbering of jobs, we have that t′1 ≤ t′2 ≤ · · · ≤ t′n.
Using this interpretation, the proper numbering can be seen as obtained by sorting
the jobs in accordance with a popular Earliest Due Date (EDD) rule. This means
that the completion times of the jobs satisfy

Cj =

j∑

i=1

pi, j = 1, . . . , n.

We also deduce that the inequality

QjCj +Rj ≤ y

must hold for each job j ∈ N , which can be rewritten as

j∑

i=1

pi ≤
y

Qj
−
Rj

Qj
.

Thus, for finding a set of Pareto-optimal points for a stripe [y, y] we need to
solve the following parametric LP problem that we denote by Problem LP(y):
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LP(y) : Maximize
∑

j∈N

αjpj

subject to

j∑

i=1

pi ≤ ajy + bj , 1 ≤ j ≤ n, (6)

p
j
≤ pj ≤ pj , 1 ≤ j ≤ n, (7)

y ∈ [y, y], (8)

where

aj =
1

Qj
, bj = −

Rj

Qj
, j ∈ N.

Notice that maximizing the quantity
∑
αjpj is equivalent (up to an additive con-

stant) to minimizing the total compression cost
∑
αjhj . For each stripe [yq−1, yq],

an optimal solution to Problem LP(y) is a piecewise linear function of y ∈ [yq−1, yq],
so that all these functions found for all stripes together form the efficiency frontier
for the original bicriteria problem 1|pj = p̄j − hj |(F,K).

3. Bicriteria Problem: Solution via Submodular Optimization

In this section, we demonstrate that Problem LP(y) reduces to optimization of a
linear function over a feasible region that is given by submodular constraints. As a
result, we obtain an algorithm that solves this problem in O(n2) time, and therefore
the original bicriteria problem is solvable in O(n3L) time.

For completeness, we start this section with definitions related to submodular
optimization. Unless stated otherwise, we follow a comprehensive monograph on
this topic by Fujishige [5].

For a set N = {1, 2, . . . , n}, let 2N denote the set of all subsets of N . For two
vectors x = (x1, x2, . . . , xn) ∈ R

n and z = (z1, z2, . . . , zn) ∈ R
n, we write x ≤ z to

denote that xj ≤ zj for each j ∈ N . A vector x ∈ X ⊂ R
n is called maximal in X if

there is no vector z ∈ X such that x ≤ z. For a vector x = (x1, x2, . . . , xn) ∈ R
n,

define x(∅) = 0 and x(A) =
∑

j∈A xj for a non-empty set A ∈ 2N .
A collection D of subsets of N is called a distributive lattice if for any two sets

in D their union and their intersection are both in D, i.e., for X ∈ D and Y ∈ D
we have that X ∩ Y ∈ D and X ∪ Y ∈ D.

Definition 1 A set-function ψ : D → R is called submodular if the inequality

ψ(A ∪ B) + ψ(A ∩B) ≤ ψ(A) + ψ(B) (9)

holds for all sets A,B ∈ D.

For a submodular function ψ defined on a distributive lattice D ⊆ 2N such that
∅, N ∈ D and ψ(∅) = 0, the pair (D, ψ) is called a submodular system on N , while
ψ is referred to as the rank function of that system.

For a submodular system (D, ψ), define two polyhedra

P (ψ) = {x ∈ R
n | x(A) ≤ ψ(A), A ∈ D}, (10)

B(ψ) = {x ∈ R
n | x ∈ P (ψ), x(N) = ψ(N)}, (11)
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called a submodular polyhedron and a base polyhedron, respectively, associated with
the submodular system. Notice that B(ψ) represents the set of all maximal vectors
in P (ψ). A submodular polyhedron associated with the pair (2N , ψ) is called a
polymatroid, provided that the rank function ψ is monotone, i.e., ψ satisfies ψ(A) ≤
ψ(B) for A ⊆ B.

Consider the polyhedron defined by the inequalities (6) that partly define the
region of Problem LP(y). Recall that the components of a vector p= (p1, p2, . . . , pn)
follow the proper numbering for the stripe (8). Introduce the nested sets

N0 = ∅, Nj = {1, 2, . . . , j}, j = 1, 2, . . . , n.

It is obvious that the collection of setsN0, N1, . . . , Nn forms a distributive lattice
Dnest ⊆ 2N . Moreover, for any set-function ψ defined on Dnest such that ψ(∅) =
0, we deduce that the pair (Dnest, ψ) is a submodular system. Indeed, for any
function ψ and any two sets Ni, Nj ∈ Dnest, where 0 ≤ i ≤ j ≤ n, we have that
ψ(Ni) + ψ(Nj) = ψ(Ni ∩ Nj) + ψ(Ni ∪ Nj), i.e., ψ is submodular on Dnest. If we
define

ψ(Nj , y) =

{
0, j = 0,
ajy + bj , 1 ≤ j ≤ n,

(12)

we see that the constraints (6) are equivalent to p(Nj) ≤ ψ(Nj , y), 0 ≤ j ≤ n, and
Pnest(ψ) = {p ∈ R

n | p(Nj) ≤ ψ(Nj , y), j ∈ N} is a submodular polyhedron. Thus,
for a fixed y ∈ [y, y], the system of constraints (6) and (7) defines a submodular
polyhedron intersected with a box.

Various problems of scheduling with controllable processing times have been
reduced to optimization of linear functions over polymatroids and so-called general-
ized polymatroids; see [15, 16]. The main advantage of this approach is that a linear
function over a polymatroid can be maximized by the greedy algorithm. Such an
algorithm considers the variables in non-increasing order of the coefficients of the
objective function and gives each variable the largest possible value that does not
violate feasibility of the current partial solution.

Below we demonstrate that problems similar to Problem LP(y) can be reduced
to optimization over simpler structures, namely, over base polyhedra. In fact, we
show that the problem of maximizing a linear function over an intersection of a
submodular polyhedron and a box is equivalent to maximizing the same function
over a base polyhedron. The benefit gained by such a reduction is that a solution to
the problem of maximizing a linear function over a base polyhedron can be obtained
essentially in closed form, as stated in the theorem below.

Theorem 2 (cf. [5]) Consider the problem

Maximize
∑

j∈N

cjxj

subject to x ∈ B(ψ),

where B(ψ) is a base polyhedron associated with a submodular function ψ. Let
π = (π(1), π(2), . . . , π(n)) be a permutation of indices such that

cπ(1) ≥ cπ(2) ≥ · · · ≥ cπ(n),

10



while Nπ
0 = ∅ and Nπ

j = (π(1), π(2), . . . , π(j)) for j ∈ N . Then vector x∗ ∈ R
n

given by
x∗π(i) = ψ(Nπ

i ) − ψ(Nπ
i−1), i = 1, 2, . . . , n

is an optimal solution.

For a submodular polyhedron P (ψ) of the form (10) associated with a pair
(D, ψ), define three polyhedra:

P (ψ)l = {x ∈ R
n | x ∈ P (ψ), x ≥ l};

P (ψ)u = {x ∈ R
n | x ∈ P (ψ), x ≤ u};

P (ψ)u
l = {x ∈ R

n | x ∈ P (ψ), l ≤ x ≤ u}.

The following two lemmas handle submodular polyhedra with either lower
bounds or upper bounds on the decision variables.

Lemma 2 (cf. [5, Corollary 3.5, p. 49], [10, Lemma 3.5, p. 179])
Polyhedron P (ψ)l is not empty if and only if l ∈ P (ψ). The set of maximal vectors
of P (ψ)l is a base polyhedron B(ψl) associated with (2N , ψl), where ψl(∅) = 0 and

ψl(A) = min
E∈D,A⊆E

{ψ(E) − l(E\A)}

for a non-empty set A ∈ 2N .

The submodular system (2N , ψl) is called the contraction of (D, ψ) by vector l.

Lemma 3 (cf. [5, Theorem 3.3, p. 48], [10, Lemma 3.4, p. 178])
Polyhedron P (ψ)u is the same as a submodular polyhedron P (ψu) associated with
(2N , ψu), where ψu(∅) = 0 and

ψu(A) = min
E∈D,E⊆A

{ψ(E) + u(A\E)}

for a non-empty set A ∈ 2N . In particular, the set of maximal vectors of P (ψ)u

forms a base polyhedron B(ψu) associated with (2N , ψu).

The submodular system (2N , ψu) is called the restriction of (D, ψ) by vector u.
We now prove a similar statement regarding the polyhedron P (ψ)u

l , which is the
intersection of a submodular polyhedron with a box. In this case both transforma-
tions, restriction and contraction, should be applied to a submodular polyhedron.

Theorem 3 Polyhedron P (ψ)u
l is not empty if and only if l ∈ P (ψ) and l ≤ u.

The set of maximal vectors of P (ψ)u
l is a base polyhedron B(ψu

l ) associated with
(2N , ψu

l ), where ψu
l (∅) = 0 and

ψu
l (A) = min

D∈D
{ψ(D) + u(A\D) − l(D\A)} (13)

for a non-empty set A ∈ 2N .

Proof. By Lemma 3, the polyhedron P (ψ)u is a submodular polyhedron P (ψu).
Applying Lemma 2 to the submodular polyhedron P (ψu) we obtain

ψu
l (A) = min

E∈2N ,A⊆E
{ψu(E) − l(E\A)}.

11



(

) *

Fig. 2. The structure of sets A,D and E

In turn, writing out ψu(E) in accordance with Lemma 3, we have that

ψu
l (A) = min

E∈2N ,A⊆E

{
min

D∈D,D⊆E
{ψ(D) + u(E\D)} − l(E\A)

}
.

Observe that

l(E\A) = l(D\A) + l(E\(A ∪D));

u(E\D) = u(A\D) + u(E\(A ∪D)).

See Figure 2 for illustration.
We further derive

ψu
l (A) = min

E∈2N ,A⊆E

{
min

D∈D,D⊆E
{ψ(D) + u(A\D) + u(E\(A ∪D))

−l(D\A) − l(E\(A ∪D))}

}

= min
E∈2N ,D∈D,A∪D⊆E

{(ψ(D) + u(A\D) − l(D\A))

+u(E\(A ∪D)) − l(E\(A ∪D))}. (14)

Since u(E\(A ∪D)) − l(E\(A ∪D)) ≥ 0 and A ∪D ⊆ E, the minimum in (14)
can be achieved by E = A ∪D, so that E can be removed, which yields (13). 2

Notice that Theorem 3 can also be derived from [4, Proposition II.2.11], which
addresses the truncation operation for generalized polymatroids.

Applying Theorem 3 to Problem LP(y), we obtain the following statement.

Corollary 1 Problem LP(y) is equivalent to maximizing the objective function∑
j∈N αjpj over the base polyhedron B(ψ̃) for y ∈ [y, y], such that ψ̃(∅, y) = 0

and for each non-empty set A ⊆ N

ψ̃(A, y) = min
0≤j≤n

{ψ(Nj , y) + p(A\Nj) − p(Nj\A)},

where ψ(Nj , y) satisfies (12).

Corollary 1 enables us to show that Problem LP(y) can be solved in O(n2) time.

To solve Problem LP(y) we may use Theorem 2 with cj = αj and ψ(A) = ψ̃(A, y).
Let π = (π(1), π(2), . . . , π(n)) be a permutation of indices such that

απ(1) ≥ απ(2) ≥ · · · ≥ απ(n).

12



Since Problem LP(y) is parametric, its optimal solution vector p∗(y) =
(p∗1(y), p

∗
2(y), . . . , p

∗
n(y)) depends on the parameter y. Due to Theorem 2 the solu-

tion is given by

p∗π(i)(y) = ψ̃(Nπ
i , y) − ψ̃(Nπ

i−1, y), i = 1, 2, . . . , n.

Recall that ψ̃(Nπ
0 , y) = 0. To compute the values ψ̃(Nπ

i , y) for all i, 1 ≤ i ≤ n,
determine a permutation σ of jobs such that

aσ(1) ≥ aσ(2) ≥ · · · ≥ aσ(n). (15)

Let us fix some i, 1 ≤ i ≤ n. Define a0 = b0 = 0, so that ψ(Nj , y) = ajy+ bj for
all j, 0 ≤ j ≤ n. Function

ψ̃(Nπ
i , y) = min

0≤j≤n
{ψ(Nj , y) + p(Nπ

i \Nj) − p(Nj\N
π
i )}

= min
0≤j≤n

{ajy + bj + p(Nπ
i \Nj) − p(Nj\N

π
i )}

is a piecewise linear function of y ∈ [y, y]. Notice that all values p(Nπ
i \Nj) −

p(Nj\Nπ
i ), j = 0, 1, . . . , n, can be found in O(n) time. Define

βi,j = bj + p(Nπ
i \Nj) − p(Nj\N

π
i ), j = 0, 1, . . . , n,

so that
ψ̃(Nπ

i , y) = min
0≤j≤n

{ajy + βi,j}.

Extend permutation (15) by additionally defining aσ(n+1) = a0 and βi,σ(n+1) =
βi,0. The problem of computing the function

ψ̃(Nπ
i , y) = min

0≤j≤n
{ajy + βi,j} = min

1≤j≤n+1
{aσ(j)y + βi,σ(j)}

can be seen as the problem of finding the lower envelope of n + 1 linear functions
given in non-increasing order of their slopes aσ(j). Exactly this problem has been
studied in [19] and has been shown to be solvable in O(n) time.

Thus, for each set Nπ
i , 0 ≤ i ≤ n, the function ψ̃(Nπ

i , y) can be found
in linear time, i.e., for Problem LP(y) finding the solution vector p∗(y) =
(p∗1(y), p

∗
2(y), . . . , p

∗
n(y)) takes O(n2) time.

The overall procedure for solving the original bicriteria problem can be stated
as follows.

Algorithm Bicrit

Step 1. Find the stripes [yq−1, yq], q = 1, . . . , `, by running Algorithm Preproc.

Step 2. For q = 1 to `, do the following:

(a) Define [y, y] = [yq−1, yq].

(b) Formulate Problem LP(y), i.e., find the proper numbering, the values aj

and bj , j ∈ N , as described in Section 2 and determine permutation σ
of the form (15).

13



(c) Solve Problem LP(y).

Step 1 of Algorithm Bicrit takes O(nL logn) time, as stated in Lemma 1. For
each q, 1 ≤ q ≤ `, Step 2b of Algorithm Bicrit can be done in O(n logn) time, while
Step 2c takesO(n2) time. As a result, in at most O(nL(n logn+n2)) = O(n3L) time
all break-points of the efficiency frontier will be found and the following statement
holds.

Theorem 4 Problem 1|pj = p̄j − hj |(F,K) is solvable in O(n3L) time.

Our algorithm compares favourably with an O(n4L2)-time algorithm for prob-
lem 1|pj = p̄j − hj |(F,K) presented in [8]. The improvement is achieved due to
formulating a parametric linear program LP(y) and applying the submodular op-
timization approach to finding its solution. For each stripe, this allows us to find
the break-points of the efficiency frontier all at once, and not one by one as done
previously. In fact, we deduce that for each stripe the number of break-points of the
efficiency frontier is O(n2), against O(n3) as stated in [8]. Besides, our algorithm is
accompanied with an accurate estimation of the number of stripes and an efficient
algorithm for their finding.

In the subsequent sections we consider the single criterion problems associated
with problem 1|pj = p̄j − hj |(F,K). In each of these problems, the value of one
of the objective functions is bounded from above, while the other function is to be
minimized.

4. Single Criterion Problems

In this section, we consider two conjugate single criterion problems related to
the bicriteria problem 1|pj = p̄j − hj |(F,K). In each of this problems, the goal is
to minimize one of the objective functions, either F or K, provided that the value
of the other function does not exceed a given bound. We demonstrate that an
optimal solution to each of these single criterion problems can be obtained faster
than derived from the solution of the bicriteria problem.

4.1. Limited Processing Cost

Consider problem 1|pj = p̄j − hj , fj(Cj) ≤ U |
∑
αjhj , which consists in min-

imizing the total compression cost, provided that the maximum processing cost
F = max{fj(Cj)} does not exceed a given upper bound U .

For problem 1|pj = p̄j − hj , fj(Cj) ≤ U |
∑
αjhj , in which each function fj(Cj)

is non-decreasing and piecewise linear with mj break-points, the upper bound U
induces the deadline dj for each job j ∈ N by which that job must be completed.
A deadline dj is determined by finding an appropriate piece of function fj (which
can be done in O(logmj) time by binary search over mj break-points of function
fj) and then by solving the linear equation

fj(dj) = U

for that piece. It follows that the deadlines for all jobs can be found in at most
O(
∑

j∈N logmj) time.
Renumber the jobs to satisfy the popular earliest due date (EDD) rule, so that

d1 ≤ d2 ≤ · · · ≤ dn. (16)
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The original problem 1|pj = p̄j − hj , fj(Cj) ≤ U |
∑
αjhj reduces to problem

1|pj = pj − hj , Cj ≤ dj |
∑
αjhj with controllable processing times in which it is

required to find a deadline feasible schedule with the smallest total compression
cost.

It is well known that if a feasible schedule that respects the deadlines of all jobs
exists, then it can be found by sequencing the jobs in accordance with the EDD
numbering. Thus, in any feasible schedule the actual processing times pj = p̄j −hj ,
must satisfy the constraints

j∑

i=1

pi ≤ dj , 1 ≤ j ≤ n, (17)

p
j
≤ pj ≤ pj , 1 ≤ j ≤ n. (18)

Here, the inequalities (17) are nested constraints, while (18) can be seen as box
constraints. Since minimizing the total compression cost

∑
αjhj is equivalent to

maximizing
∑
αjpj , it follows that problem 1|pj = p̄j −hj , fj(Cj) ≤ U |

∑
αjhj can

be formulated as an LP problem of maximizing the function
∑
αjpj subject to the

constraints (17) and (18). We refer to this problem as Problem LP1.
This problem is a special case of the parametric Problem LP(y), in which y is

fixed to be U , aj = 0 and bj = dj , j ∈ N . Therefore, the reasoning of Section 3
fully applies here and delivers an O(n2)-time algorithm for Problem LP1. Thus, for
problem 1|pj = pj−hj , Cj ≤ dj |

∑
αjhj the actual processing times can be found in

closed form in at most O(n2) time. Notice that most of previously known algorithms
for problem 1|pj = pj−hj , Cj ≤ dj |

∑
αjhj and its symmetric counterpart 1|rj,pj =

pj − hj , Cj ≤ d|
∑
αjhj also require O(n2) time, but these algorithms essentially

use scheduling reasoning and need a lengthy justification, see, e.g., [9, 12]. The
algorithm from [8] reduces the problem to finding the maximum flow, but still
does not deliver a solution in closed form. The algorithm from [15] is based on
links to polymatroids and uses balanced 2-3-trees to guarantee the running time of
O(n log n), but remains a pure scheduling algorithm.

Below we show that problem 1|pj = pj − hj , Cj ≤ dj |
∑
αjhj (or equivalently,

Problem LP1) can be solved in O(n log n) time by the methods employed in [6, 7].
Among the variety of problems studied in these papers, for our purposes we only
mention optimization problems over the region

j∑

i=1

zi ≤ vj , 1 ≤ j ≤ n,

0 ≤ zj ≤ zj , 1 ≤ j ≤ n.

(19)

It is fairly straightforward to see that Problem LP1 can be reformulated to fit
this framework. Introduce the variables zj = pj − p

j
, j ∈ N . For each job j, the

value of zj represents the decompression amount by which the actual processing
time of that job is extended compared to the minimum possible (mandatory) value
p

j
.
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With these new variables the feasible region for Problem LP1 can be written as

j∑

i=1

zi ≤ dj −

j∑

i=1

p
j
, 1 ≤ j ≤ n,

0 ≤ zj ≤ pj − p
j
, 1 ≤ j ≤ n,

which is of the form (19). Problem LP1 becomes equivalent (up to an additive
constant) to the problem of maximizing the linear function

∑
αjzj over (19). As

shown in [6], a linear function can be maximized over (19) by a greedy algorithm
that considers the decision variables in nonincreasing order of αj and gives each
variable the largest possible value. To verify feasibility of a partial solution, [6]
takes advantage of the nested structure of the region (19) and demonstrates that
using an appropriate data structure and adopting the UNION-FIND algorithm all
feasibility checks can be implemented in O(n) time. Thus, it takes O(n log n) time
to solve problem 1|pj = pj − hj , Cj ≤ dj |

∑
αjhj .

Since the original problem 1|pj = p̄j − hj , fj(Cj) ≤ U |
∑
αjhj reduces to the

corresponding problem 1|pj = pj −hj , Cj ≤ dj |
∑
αjhj with controllable processing

times in O(
∑

j∈N logmj) time, we arrive at the following statement.

Theorem 5 Problem 1|pj = p̄j − hj , fj(Cj) ≤ U |
∑
αjhj to minimize the total

compression cost subject to a bounded processing cost for each job is solvable in
O(n log n+

∑
j∈N logmj) time.

Notice that if each mj is bounded by a constant, then the running time for
solving problem 1|pj = p̄j − hj , fj(Cj) ≤ U |

∑
αjhj reduces to O(n log n).

Observe that the technique developed in [6, 7] is very powerful and allows han-
dling more general objective functions, e.g., maximization of separable concave
functions or minimization of separable convex functions over (19). This leads to
polynomial-time algorithms for scheduling problems with more general compres-
sion cost functions.

4.2. Limited Compression Cost

Consider problem 1|pj = p̄j − hj ,
∑
αjhj ≤ V |F , which consists in minimizing

the maximum processing cost F = max{fj(Cj)}, provided that the total compres-
sion cost does not exceed a given upper bound V .

It is natural to interpret this problem graphically, similarly to Section 2; see Fig-
ure 1. Our algorithm consists of several stages and builds on the previous material
of this paper. To make the algorithm more computationally efficient, the median
finding procedure is employed, see [3, pp. 189–192] for details.

Assume that F ∗ is an optimal value of the objective function in problem 1|pj =
p̄j − hj ,

∑
αjhj ≤ V |F . Let ỹ0 < ỹ1 < · · · < ỹm be the sequence of the ordinates

of the points in S1 ∪ S3 found in Step 1 of Algorithm Preproc, see Section 2.
Note that m = O(L). In the first stage, we find an interval [ỹr−1, ỹr] such that
F ∗ ∈ [ỹr−1, ỹr]. This is done by binary search over the values {ỹ0, ỹ1, . . . , ỹm}.
Start with r = bm/2c, take U = ỹr by using a median finding algorithm, and solve
a single criterion problem 1|pj = p̄j − hj , fj(Cj) ≤ U |

∑
αjhj using the method

described in Subsection 4.1. If the found value of the function
∑
αjhj is greater

than the upper bound V , we take a larger trial value U = ỹr+br/2c. Otherwise, we
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take a smaller trial value U = ỹr−br/2c. The process is repeated until the required
interval is found.

In the second stage, we find a stripe [y, y] such that F ∗ ∈ [y, y] ⊆ [ỹr−1, ỹr].
For this, we first compute all the ordinates of the points in S2 that belong to the
stripe [ỹr−1, ỹr], where S2 is defined in Section 2. Since each function fj is linear
in the interval [ỹr−1, ỹr], the required points in S2 within the stripe [ỹr−1, ỹr] are
given as the intersection points of n linear pieces, and the number of such points
is O(n2). To identify the required stripe [y, y] we combine binary search with a
median finding algorithm in a similar way as in the first stage.

The third and the final stage of the algorithm searches for the optimal value
F ∗ in the determined stripe [y, y]. For each job j, let the piece that represents the
processing cost function fj(t) in this stripe be Qjt+Rj , and assume that the jobs
are properly numbered, as introduced in Section 2, so that job j completes at time∑j

i=1 pj . Formulate Problem LP(y) and solve it as described in Section 3. As a
result, we will find an optimal solution vector p∗(y) = (p∗1(y), p

∗
2(y), . . . , p

∗
n(y)) and

the optimal objective function K(y) =
∑
αjp

∗
j (y). Function K(y) is the sum of n

piecewise linear functions, each consisting of O(n) pieces. Thus, function K(y) is
piecewise linear in y and consists of O(n2) pieces. The optimal value of F ∗ is equal
to such a y∗ ∈ [y, y] that K(y∗) = V .

Let us estimate the running time of the described procedure.
In the first stage, we need to use a median finding algorithm O(logm) times,

which requires O(m+m/2+m/4+ · · · ) = O(m) = O(L) time. As follows from The-
orem 5, for each trial value U , solving problem 1|pj = p̄j − hj , fj(Cj) ≤ U |

∑
αjhj

requires O(
∑

j∈N logmj + n logn) time, and we have O(logm) = O(logL) trial
problems to solve. Hence, the overall time complexity of that stage is

O
(
L+

(∑

j∈N

logmj + n logn
)

logL
)
.

In the second stage, we can compute the points in S2 within the stripe [ỹr−1, ỹr]
in O(n2) time. The rest of the running time in the second stage can be analyzed
in a similar way to that in the first stage. Since the number of points in S2 within
the stripe [ỹr−1, ỹr] is O(n2), we need to solve O(log n) trial problems, and each of
these problems can be solved in O(

∑
j∈N logmj + n logn) time. Hence, the time

complexity of this stage is

O
(
n2 +

(∑

j∈N

logmj + n logn
)

log n
)
.

Finally, in the third stage, Problem LP(y) is solvable in O(n2) time, and the
optimal value F ∗ = y∗ can be determined in O(n2) time by examining all pieces of
function K(y∗).

Summarizing, the overall time complexity of the three-stage procedure for solv-
ing problem 1|pj = p̄j − hj ,

∑
αjhj ≤ V |F is

O
(
L+ n2 +

(∑

j∈N

logmj + n logn
)

logL
)
.
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Theorem 6 Problem 1|pj = p̄j − hj ,
∑
αjhj ≤ V |F to minimize the maximum

processing cost subject to a bounded decompression cost is solvable in O(L + n2 +
(
∑

j∈N logmj + n logn) logL) time.

Notice that if each mj is bounded by a constant, then L = O(n) and∑
j∈N logmj = O(n), so that the running time for solving problem 1|pj =

p̄j − hj ,
∑
αjhj ≤ V |F reduces to O(n2 + n log2 n).

5. Conclusion

This paper presents solution algorithms for the single machine scheduling prob-
lems with controllable processing times, which have applications to imprecise com-
putation and to make-or-buy production planning. Our algorithms are less time
consuming than those previously known.

It should be noted that the collection of solution methods developed in the area
of scheduling with controllable processing times does not exhibit a general under-
lying idea that is common for several problems. For example, even though many
algorithms in this area exploit some kind of greedy argument, usually in the liter-
ature the design and justification of an individual algorithm is very much problem
dependent. On the other hand, as pointed out in [15, 16], many problems with
controllable processing times can be reformulated in terms of optimization prob-
lems over regions described by submodular constraints, including polymatroids and
generalized polymatroids. The main advantage of such a reformulation is that the
greedy optimization algorithms over mentioned regions are immediately justified.
The algorithm developed that way can be used as a subroutine in designing algo-
rithms for other problems in this area; see, e.g., the paper by Wan et al. [22] which
relies on one of the algorithms presented in [16].

This paper is another step towards a better understanding of the link between
scheduling with controllable parameters and problems of submodular optimization.
From that point of view, Theorem 3 of this paper makes an interesting contribu-
tion by providing the rank function for a base polyhedron related to a submodular
polyhedron intersected with a box. Notice that box constraints with non-zero lower
bounds are insufficiently studied in submodular optimization. Since box constraints
occur in many applications, we expect that Theorem 3 will be found a useful tool.
Algorithm Bicrit that is based on Theorem 3 demonstrates the power of our ap-
proach.
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Fig. A.1. Example with three functions

Appendix A: Proof of Theorem 1

For each function fj(t), 1 ≤ j ≤ n, we denote by t0l = 0, t1j , t
2
j , . . . , t

mj

j = T the
increasing sequence of t-coordinates of the break-points of fj . That is, each fj is
linear in the interval [tk−1

j , tkj ] for k = 1, 2, . . . ,mj . Let Λk
j denote the k-th linear

piece of the function fj which corresponds to the interval [tk−1
j , tkj ].

Let us fix a linear piece Λk
j and determine which linear pieces Λk′

j′ of other

functions fj′ with j′ 6= j may intersect Λk
j in the interval [tk−1

j , tkj ]. We may restrict

our attention to only those linear pieces Λk′

j′ for which tk
′−1

j′ ≤ tk−1
j . Under this

assumption, the pieces Λk
j and Λk′

j′ may intersect if tk
′

j′ ≥ tk−1
j . We call a pair

(Λk
j ,Λ

k′

j′ ) of linear pieces a suitable pair if the condition tk
′−1

j′ ≤ tk−1
j < tk

′

j′ is

satisfied; the piece Λk
j is called the primary piece of the pair, while Λk′

j′ is called the

secondary piece of the pair. We count suitable pairs (Λk
j ,Λ

k′

j′ ) by fixing each linear

piece as the primary piece Λk
j defined over [tk−1

j , tkj ] and considering all secondary

pieces Λk′

j′ defined over segments [tk
′−1

j′ , tk
′

j′ ] such that either tk
′−1

j′ = tk−1
j or the left-

end point tk
′−1

j′ is located to the left of tk−1
j . Notice that a suitable pair does not

necessarily correspond to an actual intersection point, but each intersection point
can be associated with a suitable pair. The same primary piece Λk

j may intersect

with a piece Λk′

j′ , but the pair (Λj
k,Λ

j′

k′) is not suitable; in this case, however, the

pair (Λj′

k′ ,Λ
j
k, ) will be counted as suitable. In what follows, we count the number

Φ of all suitable pairs. It is clear that Φ is an upper bound on the total number of
intersection points of all functions.
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Fig. A.2. Generation of the tightness example: (a) one function, (b) two
functions, (c) three functions

For a linear piece Λk
j , where 1 ≤ j ≤ n and 1 ≤ k ≤ mj , we denote

Pk
j = {(Λk

j ,Λ
k′

j′ ) | j 6= j′, tk
′−1

j′ ≤ tk−1
j < tk

′

j′ , and j′ < j if tk
′−1

j′ = tk−1
j }.

If tk
′−1

j′ < tk−1
j < tk

′

j′ holds, then we have (Λk
j ,Λ

k′

j′ ) ∈ Pk
j ; if ηj′

k′−1 = ηj
k−1 < ηj′

k′

holds, then we have either (Λk
j ,Λ

k′

j′ ) ∈ Pj
k (provided that j′ < j) or (Λk′

j′ ,Λ
k
j , ) ∈ Pk′

j′

(provided that j′ > j). This implies that any pair (Λj
k,Λ

j′

k′) with j 6= j′ satisfying

the condition tk
′−1

j′ ≤ tk−1
j < tk

′

j′ is contained in exactly one of the sets Pk
j or Pk′

j′ and
therefore we have

Φ =

n∑

j=1

mj∑

k=1

|Pk
j |.

Figure A.1 shows three piecewise linear functions f1, f2 and f3, consisting of
4, 3 and 4 linear pieces, respectively. For piece Λ3

1 taken as the primary one, the set
P3

1 consists of two suitable pairs (Λ3
1,Λ

2
2) and (Λ3

1,Λ
2
3), and only the former pair

corresponds to an actual intersection point.
Notice that |Pk

j | ≤ n − 1 since for each j ′ 6= j there may exist at most one

interval [tk
′−1

j′ , tk
′

j′ ] satisfying tk
′−1

j′ ≤ tk−1
j < tk

′

j′ . Moreover, for k = 1 we have

n∑

j=1

|P1
j | ≤ n(n− 1)/2,
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since the sets P1
j , j = 1, . . . , n, are mutually disjoint subsets of pairs (Λ1

j ,Λ
1
j′) with

j 6= j′. Hence, we derive

Φ ≤
n∑

j=1

|P1
j |+

n∑

j=1

mj∑

k=2

|Pk
j | =

n(n− 1)

2
+(n−1)

n∑

j=1

(mj −1) = (n−1)L−
n(n− 1)

2
,

which proves the required bound.
This bound is tight. It is possible to select n functions, each consisting of m

linear pieces, so that for each function its first piece is intersected with exactly one
piece of each of the other functions, while each piece, starting form the second,
is intersected with exactly two pieces of each of the other functions. In this case,
Φ = n(n−1)/2+n(n−1)(m−1) = nm(n−1)−n(n−1)/2 = (n−1)L−n(n−1)/2.
This can be achieved by placing the break-points of the first function along a circle,
followed by adding each of the next functions by an appropriate rotation of the
original function. The idea of the generation of the functions for the tightness
example is illustrated in Figure A.2.
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