
Fast Divide-and-Conquer Algorithms for Preemptive

Scheduling Problems with Controllable Processing Times

—A Polymatroid Optimization Approach—

Natasha V. Shakhlevich∗ Akiyoshi Shioura† Vitaly A. Strusevich‡

April 4, 2008

Abstract

We consider a variety of preemptive scheduling problems with controllable processing

times on a single machine and on identical/uniform parallel machines, where the objective

is to minimize the total compression cost. In this paper, we propose fast divide-and-conquer

algorithms for these scheduling problems. Our approach is based on the observation that each

scheduling problem we discuss can be formulated as a polymatroid optimization problem.

We develop a novel divide-and-conquer technique for the polymatroid optimization problem

and then apply it to each scheduling problem. We show that each scheduling problem can

be solved in O(Tfeas(n) × log n) time by using our divide-and-conquer technique, where n is

the number of jobs and Tfeas(n) denotes the time complexity of the corresponding feasible

scheduling problem with n jobs. This approach yields faster algorithms for most of the

scheduling problems discussed in this paper.

1 Introduction

We consider a variety of preemptive scheduling problems with controllable processing times on

a single machine and on identical/uniform parallel machines. In this paper, we propose fast

divide-and-conquer algorithms for these scheduling problems.

Our Problems Preemptive scheduling problems with controllable processing times discussed in

this paper are described as follows. We have n jobs, which are to be processed on m machines.

The sets of jobs and machines are denoted by N = {1, 2, . . . , n} and by M = {1, 2, . . . ,m},

respectively. Each job j has processing requirement p(j). If m = 1, we have a single machine;

otherwise we have m (≥ 2) parallel machines. The parallel machines are called identical if their

speeds are equal; otherwise, the machines are called uniform and machine i has a speed si, so

that processing a job j on machine i for τ time units reduces its overall processing requirement

by siτ .

∗School of Computing, University of Leeds, Leeds LS2 9JT, U.K., ns@comp.leeds.ac.uk
†Graduate School of Information Sciences, Tohoku University, Sendai 980-8579, Japan,

shioura@dais.is.tohoku.ac.jp.
‡Department of Mathematical Sciences, University of Greenwich, Old Royal Naval College, Park Row, London

SE10 9LS, U.K., V.Strusevich@greenwich.ac.uk

1

In the processing of each job preemption is allowed, so that the processing of any job can

be interrupted at any time and resumed later, possibly on another machine. No job is allowed

to be processed on several machines at a time, and each machine processes at most one job at

a time. Job j also has release date r(j) and due date d(j), and any piece of job j should be

scheduled between the time interval [r(j), d(j)].

Suppose that the processing requirement p(j) (j ∈ N) cannot be feasibly scheduled on the

machines. Then, we can reduce the processing requirement p(j) to p(j) (≤ p(j)) by paying

the cost w(j)(p(j) − p(j)) so that jobs can be feasibly scheduled. We here assume that the

lower bound p(j) of the processing requirement p(j) is given and p(j) ≥ p(j) should be satisfied.

The objective is to minimize the total cost
∑n

j=1
w(j)(p(j) − p(j)) subject to the constraints

that (i) processing requirement p(j) (j ∈ N) can be feasibly scheduled on m machines, and

(ii) p(j) ≤ p(j) ≤ p(j) (j ∈ N). In this paper, we mainly consider an equivalent problem

of maximizing
∑n

j=1 w(j)p(j) under the same constraints (i) and (ii). We refer to [10] for

comprehensive treatment of this problem.

Preemptive scheduling problem with controllable processing times is also known by different

names with different interpretations. Scheduling of imprecise computation tasks (see, e.g., [2,

10, 19, 20, 21]; see also [17]) is an equivalent problem, where the portion p(j) − p(j) of job j

is interpreted as the error of computation and
∑n

j=1
w(j)(p(j) − p(j)) is regarded as the total

weighted error. The scheduling minimizing the weighted number of tardy task units (see, e.g.,

[7, 11]) is equivalent to the special case with p(j) = 0 for all job j, where the value p(j) − p(j)

is regarded as the portion of the processing requirement which cannot be processed before the

due date d(j).

There are many kinds of preemptive scheduling problems with controllable processing times,

depending on the setting of the underlying scheduling problems. In this paper, we consider three

types of machines: a single machine, identical parallel machines, and uniform parallel machines.

We also consider the cases where release/due dates of jobs are the same or arbitrary. We assume

r(j) = 0 (resp., d(j) = d (> 0)) for all j ∈ N if all jobs have the same release dates (resp., due

dates).

We denote each problem as {Single, Ide, Uni}-{SameR, ArbR}-{SameD, ArbD}. For exam-

ple, Ide-SameR-ArbD denotes the the identical parallel machine scheduling problem with the

same r(j) and arbitrary d(j). We note that the problem {Single, Ide, Uni}-SameR-ArbD is

equivalent to {Single, Ide, Uni}-ArbR-SameD (see, e.g, [8, 15, 16]), and therefore need not be

considered. Hence, we deal with nine problems in this paper.

Previous Results We review the current fastest algorithms for nine scheduling problems

discussed in this paper. The summary is given in Table 1.

Single-SameR-SameD can be easily solved in O(n) time. Janiak and Kovalyov [9] formulate

Single-SameR-ArbD as a linear program and show that the linear program can be solved in

O(n log n) time. For Single-ArbR-ArbD, Leung et al. [11] slightly improve the analysis of the

O(n2)-time greedy algorithm in [20] and obtain a better bound O(n log n + κn), where κ is the

number of distinct w(j). Shih et al. [19] propose an O(n log n)-time divide-and-conquer algorithm

2

Single Previous Results This Paper Feasible Schedule

same r(j) O(n) (trivial) — O(n) (trivial)

same d(j) (best possible bound)

same r(j) O(n log n) [9] — O(n log n) [13]

arbitrary d(j) (best possible bound)

arbitrary r(j) O(n log n + κn) [11] O(n log n) O(n log n) [8]

arbitrary d(j) O(n log n) (for Z) [19] (O(n) w/o sorting)

Identical Previous Results This Paper Feasible Schedule

same r(j) O(n) [17] — O(n) [13]

same d(j) (best possible bound)

same r(j) O(n2(log n)2) [12] O(n log m log n) O(n log n) [15]

arbitrary d(j) (O(n log m) w/o sorting)

arbitrary r(j) O(n2(log n)2) [12] — O(n2(log n)2) (cf. [2, 21])

arbitrary d(j)

Uniform Previous Results This Paper Feasible Schedule

same r(j) O(mn + n log n) [14] O(min{n log n, O(m log m + n) [6]

same d(j) n+m log m log n})

same r(j) O(mn3) [12] O(mn log n) O(mn + n log n) [16]

arbitrary d(j) (O(mn) w/o sorting)

arbitrary r(j) O(mn3) [12] — O(mn3) [3]

arbitrary d(j)

Table 1: Summary of Our Results and Previous Results.

The time complexity with “w/o sorting” means the time complexity except for the time required

for sorting input numbers of size O(n) such as w(j), r(j), d(j).

for Single-ArbR-ArbD, which works only for instances with the numbers p(j), p(j), r(j), d(j)

given by integers.

Ide-SameR-SameD can be formulated as the continuous knapsack problem by using the result

of McNaughton [13], and therefore can be solved in O(n) time (see [17]). McCormick [12] shows

that Ide-ArbR-ArbD (and also Ide-SameR-ArbD) can be formulated as a parametric max flow

problem, and applies the algorithm of Gallo et al. [5] to achieve the time complexity O(n3 log n),

which can be reduced to O(n2(log n)2) by using the balanced binary tree representation of time

intervals as in Chung et al. [2, 21].

Uni-SameR-SameD can be solved by a greedy algorithm in O(mn + n log n) time [14]. Mc-

Cormick [12] shows that Uni-ArbR-ArbD (and also Uni-SameR-ArbD) can be formulated as a

parametric max flow problem on a bipartite network, and applies the algorithm of Ahuja et al.

[1] to achieve the time complexity O(mn3).

Our Approach and Results The summary of our results is given in Table 1. Our approach

is based on the observation that each of nine scheduling problems discussed in this paper can

3

be formulated as a polymatroid optimization problem of the following form:

(LP) Maximize

n∑

j=1

w(j)p(j)

subject to p(Y) ≤ ϕ(Y) (Y ∈ 2N), p(j) ≤ p(j) ≤ p̄(j) (j ∈ N),

where p(Y) =
∑

j∈Y p(j) and ϕ : 2N → R+ is a polymatroid rank function, i.e., a nondecreasing

submodular function with ϕ(∅) = 0. This observation is already made in [12, 17, 18] and used

to show the validity of greedy algorithms for the scheduling problems. On the other hand, we

use this observation in a different way; we develop a novel divide-and-conquer technique for the

problem (LP), and apply it to the scheduling problems to obtain faster algorithms.

We define a function ϕ̃ : 2N → R by

ϕ̃(X) = min
Y ∈2N

{ϕ(Y) + p(X \ Y) − p(Y \ X)} (X ∈ 2N).

Then, ϕ̃ is also a polymatroid rank funciton, and the set of maximal feasible solutions of (LP)

is given as {p ∈ R
n | p(Y) ≤ ϕ̃(Y) (Y ∈ 2N), p(N)=ϕ̃(N)} (cf. [4, Sect. 3.1(b)]). Our divide-

and-conquer technique is based on the following property, where the proof is given in Sect. 2:

Theorem 1.1. Let k ∈ N and Nk = {j ∈ N | w(j) ≥ w(k)}. Suppose that X∗ ∈ 2N satisfies

ϕ̃(Nk) = ϕ(X∗) + p(Nk \ X∗) − p(X∗ \ Nk). (1.1)

Then, there exists an optimal solution q ∈ R
n of the problem (LP) satisfying q(X∗) = ϕ(X∗),

q(j) = p(j) (j ∈ Nk \ X∗), and q(j) = p(j) (j ∈ X∗ \ Nk).

By Theorem 1.1, the problem (LP) can be decomposed into two subproblems of similar

structure, where the one is with respect to the variables {p(j) | j ∈ X∗} and the other with

respect to {p(j) | j ∈ N \ X∗}. Moreover, Theorem 1.1 shows that some of the variables can be

fixed, which implies that each of the two subproblems contains at most n/2 non-fixed variables

if we choose k = n/2. Hence, we can show that the depth of recursion is O(log n) when this

decomposition technique is applied recursively to (LP).

We also show that a subset X∗ ∈ 2N satisfying (1.1) can be computed in O(Tfeas(n)) time

for each of the scheduling problem, where Tfeas(n) denotes the time complexity for computing

a feasible schedule with n jobs, except for the time required for sorting the input numbers (see

Table 1 for the actual time complexity for comptuing a feasible schedule). This implies that each

scheduling problem can be solved in O(Tfeas(n) × log n) time by using our divide-and-conquer

technique. By applying this approach, we can obtain faster algorithms for four of the nine

scheduling problems discussed in this paper (see Table 1).

Organization of This Paper In Sect. 2 we explain our divide-and-conquer algorithm for

(LP). We then apply the divide-and-conquer technique to each scheduling problem in the follow-

ing sections. We first give an O(n log n)-time algorithm for Single-ArbR-ArbD in Sect. 3. We

show in Sect. 4 that Ide-SameR-ArbD and Uni-SameR-ArbD can be solved in O(n log m log n)

time and O(mn log n) time, respectively, in Sect. 4. Finally, two algorithms for Uni-SameR-

SameD, which run in O(n log n) time and O(n + m log m log n) time, respectively, are presented

in Sect. 5. Proofs omitted in the main part of this paper are given in Appendix.

4

2 Divide-and-Conquer Technique for Polymatroid Optimization

We explain our divide-and-conquer technique for the problem (LP). The discussion in this section

is based on basic properties of polymatroids and submodular polyhedra (see, e.g., [4]).

We, without loss of generality, assume that the weights w(j) (j ∈ N) are all distinct; this

assumption can be easily fulfilled, e.g., by using perturbation. In addition, we suppose that a

subset F ⊆ N such that p(j) = p(j) (j ∈ F) is given, i.e, the variable p(j) for each job j ∈ F

is already fixed. The set F is called a fixed-job set, and will be used in the divide-and-conquer

algorithm. We denote by n̂ the number of non-fixed variables in (LP), i.e., n̂ = n − |F |.

We first show how to decompose the problem (LP) into subproblems. Let k ∈ N be an

integer with |Nk \F | = bn̂/2c, where Nk = {j ∈ N | w(j) ≥ w(k)}. Suppose that (1.1) holds for

some X∗ ∈ 2N . By Theorem 1.1, the problem (LP) can be decomposed into the following two

subproblems of smaller size:

(SLP1) Maximize
∑

j∈X∗
w(j)p(j)

subject to p(Y) ≤ ϕ1(Y) (Y ∈ 2X∗),

p(j) ≤ p(j) ≤ p̄(j) (j ∈ X∗ ∩ Nk), p(j) = p(j) (j ∈ X∗ \ Nk),

(SLP2) Maximize
∑

j∈N\X∗
w(j)p(j)

subject to p(Y) ≤ ϕ2(Y) (Y ∈ 2N\X∗),

p(j) ≤ p(j) ≤ p̄(j) (j ∈ (N \ Nk) \ X∗), p(j) = p(j) (j ∈ Nk \ X∗),

where ϕ1 : 2X∗ → R and ϕ2 : 2N\X∗ → R are defined as

ϕ1(Y) = ϕ(Y) (Y ∈ 2X∗), ϕ2(Y) = ϕ(Y ∪ X∗) − ϕ(X∗) (Y ∈ 2N\X∗).

Note that the subproblems (SLP1) and (SLP2) (and their corresponding scheduling problems)

have a structure similar to that of the original problem (LP).

Lemma 2.1. Suppose that p1 ∈ R
X∗ (resp., p2 ∈ R

N\X∗) is an optimal solution of (SLP1)

with p1(X∗) = ϕ1(X∗) (resp., (SLP2) with p2(N \ X∗) = ϕ2(N \ X∗)). Then, the direct sum

p = p1 ⊕ p2 ∈ R
n of p1 and p2 defined by

(p1 ⊕ p2)(j) =

{
p1(j) (j ∈ X∗),

p2(j) (j ∈ N \ X∗)

is an optimal solution of (LP) with p(N) = ϕ(N).

The fixed-job sets for (SLP1) and (SLP2) are given by F1 = (F ∩ X∗) ∪ (X∗ \ Nk) and

F2 = (F \ X∗) ∪ (Nk \ X∗), respectively. Since

|X∗ \ F1| ≤ |Nk \ F | = bn̂/2c, |(N \ X∗) \ F2| ≤ |(N \ Nk) \ F | = dn̂/2e, (2.1)

the numbers of non-fixed variables in (SLP1) and in (SLP2) are at most half of that in (LP). This

implies that the depth of recursion is O(log n) when this decomposition is applied recursively.

5

We then explain how to compute X∗ ∈ 2N satisfying (1.1). We have

ϕ̃(Nk) = −p(N \ Nk) + min
X∈2N

{ϕ(X) + p(Nk \ X) + p((N \ Nk) \ X)}, (2.2)

and the second term in the right-hand side of (2.2) is equal to the optimal value of the following

problem (cf. [4, Sect. 3.1 (b)]):

(ULP) Maximize

n∑

j=1

p(j)

subject to p(X) ≤ ϕ(X) (X ∈ 2N),

0 ≤ p(j) ≤ u(j) (j ∈ N),

where

u(j) =

{
p(j) (j ∈ Nk),

p(j) (j ∈ N \ Nk).
(2.3)

The problem (ULP) is a special case of the problem (LP) where the objective function is un-

weighted, i.e., w(j) = 1 (j ∈ N), and the lower bound of the variable p(j) (j ∈ N) is equal to

zero, and therefore easier to solve. The scheduling problem corresponding to (ULP) is to max-

imize the sum of processing requirements under the upper bound constraint and the feasibility

constraint that the processing requirements can be feasibly scheduled on machines, and can be

solved in O(Tfeas(n)) time, in a similar way as the problem of computing a feasible schedule.

Let q ∈ R
n be an optimal solution of (ULP), and X∗ ∈ 2N the unique maximal set

with q(X∗) = ϕ(X∗). It is shown in the following sections that such X∗ can be computed

in O(Tfeas(n)) time. By the optimality of q and submodularity of ϕ, we have

q(j) = p(j) (j ∈ Nk \ X∗), q(j) = p(j) (j ∈ (N \ Nk) \ X∗)),

implying that X∗ satisfies (1.1) since

ϕ̃(Nk) = −p(N \ Nk) + q(N)

= −p(N \ Nk) + {ϕ(X∗) + p(Nk \ X∗) + p((N \ Nk) \ X∗)}

= ϕ(X∗) + p(Nk \ X∗) − p(X∗ \ Nk).

Finally, we analyze the time complexity of our divide-and-conquer algorithm. Let T (n, n̂)

be the time complexity for solving the problem (LP) with n variables and n̂ non-fixed variables,

except for the time required for sorting input numbers. Then, we have

T (n, n̂) = O(Tfeas(n)) + T (n1, n
′
1) + T (n2, n

′
2),

where n1 + n2 = n, n′
1 ≤ min{n1, bn̂/2c}, and n′

2 ≤ min{n2, dn̂/2e}. By solving the recursive

equation, we have T (n, n̂) = O(Tfeas(n) × log n).

Theorem 2.2. Suppose that a subset X∗ ∈ 2N satisfying (1.1) can be computed in O(Tfeas(n))

time. Then, the problem (LP) can be solved in O(Tfeas(n) × log n) time.

6

Finally, we give a proof of Theorem 1.1.

Proof of Theorem 1.1. Since the set of maximal feasible solutions of (LP) is given as {p ∈ R
n |

p(Y) ≤ ϕ̃(Y) (Y ∈ 2N), p(N)=ϕ̃(N)}, the vector p∗ ∈ R
n given by p∗(j) = ϕ̃(Nj) − ϕ̃(Nj−1)

(j = 1, 2, . . . , n) is an optimal solution of (LP) (cf. [4, Sect. 3.1]). We show that the vector

q = p∗ satisfies the conditions

q(X∗) = ϕ(X∗), q(j) = p(j) (j ∈ Nk \ X∗), q(j) = p(j) (j ∈ X∗ \ Nk). (2.4)

Since p∗ is a feasible solution of the problem (LP), we have

p∗(X∗) ≤ ϕ(X∗), p∗(j) ≤ p(j) (j ∈ Nk \ X∗), −p∗(j) ≤ −p(j) (j ∈ X∗ \ Nk). (2.5)

By the definition of p∗, we have p∗(Nk) = ϕ̃(Nk) = ϕ(X∗) + p(Nk \ X∗) − p(X∗ \ Nk), which,

together with (2.5), implies that all the inequalities in (2.5) hold with equality. Hence, (2.4)

follows.

3 Single Machine with Arbitrary Release/Due Dates

We apply the divide-and-conquer technique in Sect. 2 to the problem Single-ArbR-ArbD. To

describe the algorithm, we consider a restriction on the availability of the machine. Let Ĩ =

{[gk, gk+1] | k = 1, 2, . . . , 2n − 1} be a set of time intervals, where gk is the k-th largest number

in {r(j), d(j) | j ∈ N}. We are given a set of time intervals I = {[e1, f1], [e2, f2], . . . , [e`, f`]} ⊆ Ĩ

such that the machine is available only in these time intervals, where e1 ≤ f1 ≤ · · · ≤ e` ≤ f`.

In addition, we are given a subset F of jobs (fixed-job set) such that p(j) = p(j) for j ∈ F . We

denote this variant of the problem Single-ArbR-ArbD by P(I,N, F). Any subproblem which

appears during the recursive decomposition of the problem Single-ArbR-ArbD is of the form

P(I,N, F); in particular, the original problem Single-ArbR-ArbD coincides with P(Ĩ , N, ∅).

The problem P(I,N, F) can be formulated as the problem (LP) with the polymatroid rank

function ϕ : 2N → R given by

ϕ(X) =
∑

{fk − ek | 1 ≤ k ≤ `, [ek, fk] ⊆ [r(j), d(j)] for some j ∈ X}.

Let k ∈ N be an integer with |Nk \ F | = bn̂/2c, where n̂ = n − |F |, and suppose that X∗ ∈

2N satisfies (1.1). Then, P(I,N, F) is decomposed into the subproblems P(I1, N1, F1) and

P(I2, N2, F2), where





I1 = {[ek, fk] | 1 ≤ k ≤ `, [ek, fk] ⊆ [r(j), d(j)] for some j ∈ X∗},

N1 = X∗, F1 = (F ∩ X∗) ∪ (X∗ \ Nk),

I2 = I \ I1, N2 = N \ X∗, F2 = (F \ X∗) ∪ (Nk \ X∗).

In addition, we update p and p by

p(j) := p(j) (j ∈ X∗ \ Nk), p(j) := p(j) (j ∈ Nk \ X∗). (3.1)

7

We decompose the problem P(I,N, F) recursively in this way and compute an optimal solution.

We now explain how to compute X∗ ∈ 2N satisfying (1.1) in O(n) time. It is assumed that

the numbers r(j), d(j) (j ∈ N) and ek, fk (k = 1, 2, . . . , `) are already sorted. We firstly compute

an optimal solution q ∈ R
n of the problem (ULP) corresponding to P(I,N, F), which can be

done in O(Tfeas(n)) = O(n) time by using either of the algorithms in [7, 20]. Then, we compute a

partition {N0, N1, . . . , Nv} of N such that q(Nh) = maxj∈Nh
d(j)−minj∈Nh

r(j) (h = 1, 2, . . . , v)

and that N \ N0 is maximal under this condition, which can be done in O(n) time. Since

maxj∈Nh
d(j) − minj∈Nh

r(j) = ϕ(Nh) (h = 1, . . . , v), the set X∗ = N \ N0 is the unique

maximal set with q(X∗) = ϕ(X∗). Hence, Theorem 2.2 implies the following result.

Theorem 3.1. The problem P(I,N, F) can be solved in O(n log n) time. In particular, the

problem Single-ArbR-ArbD can be solved in O(n log n) time.

It should be mentioned that our algorithm for Single-ArbR-ArbD is similar to the divide-

and-conquer algorithm by Shih et al. [19], but the two algorithms are based on different ideas.

Indeed, the algorithm in [19] works only for instances with the numbers p(j), p(j), r(j), d(j)

given by integers, while ours can be applied to any problem with real numbers.

4 Identical Parallel Machines with the Same Release Dates and

Different Due Dates

We apply the divide-and-conquer technique in Sect. 2 to the problem Ide-SameR-ArbD. To

describe the algorithm, we consider a restriction on the availability of the machines. Suppose

that we are given numbers bi (i ∈ M) and c such that machine i is available in the time interval

[bi, c]. In addition, we are given a subset F of jobs (fixed-job set) such that p(j) = p(j) for

j ∈ F . We denote this variant of the problem Ide-SameR-ArbD by P(m,B, c,N, F), where

B = {bi | i ∈ M}. Any subproblem which appears during the recursive decomposition of the

problem Ide-SameR-ArbD is of the form P(m,B, c,N, F); in particular, the original problem

Ide-SameR-ArbD is the case where b1 = · · · = bm = 0, c = maxj∈N d(j), and F = ∅.

The problem P(m,B, c,N, F) can be formulated as the problem (LP) with the polymatroid

rank function ϕ : 2N → R given by

ϕ(X) =
m∑

i=1

max{min{d(i), c} − bi, 0},

where we assume that b1 ≤ b2 ≤ · · · ≤ bm and that d(i) is the i-th largest number in {d(j) | j ∈

N} for i = 1, . . . ,m. Let k ∈ N be an integer with |Nk \ F | = bn̂/2c, where n̂ = n − |F |, and

suppose that X∗ ∈ 2N satisfies (1.1). Then, the problem P(m,B, c,N, F) is decomposed into

the subproblems P(m1, B1, c1, N1, F1) and P(m2, B2, c2, N2, F2), where




m1 = min{m, |X∗|}, B1 = {b1, b2, . . . , bm1
}, c1 = min{c, d(jm1

)},

N1 = X∗, F1 = (F ∩ X∗) ∪ (X∗ \ Nk),

m2 = m, B2 = {d(j1), . . . , d(jm1
), bm1+1, . . . , bm}, c2 = c,

N2 = N \ X∗, F2 = (F \ X∗) ∪ (Nk \ X∗),

8

where we assume that {j1, j2, . . . , jm1
} ⊆ X∗ and that d(ji) is the i-th largest number in {d(j) |

j ∈ X∗} for i = 1, . . . ,m1. In addition, we update p and p by (3.1).

Suppose that p1 ∈ R
X∗ (resp., p2 ∈ R

N\X∗) is an optimal solution of P(m1, B1, c1, N1, F1)

(resp., P(m2, B2, c2, N2, F2)). Then, the vector p∗ ∈ R
n defined by

p∗(j) =

{
p1(j) + max{0, d(j) − d(jm1

)} (j ∈ X∗),

p2(j) (j ∈ N \ X∗)

is an optimal solution of P(m,B, c,N, F).

We now explain how to compute X∗ ∈ 2N satisfying (1.1) in O(n log m) time. It is assumed

that the numbers d(j) (j ∈ N) are already sorted. By using a slight modification of the algorithm

by Sahni [15], we can compute an optimal solution q ∈ R
n of the problem (ULP) corresponding

to P(m,B, c,N, F) in O(Tfeas(n)) = O(n log m) time. Then, we compute the unique maximal

set X∗ ∈ 2N with q(X∗) = ϕ(X∗). Using the following simple observations, we can find such X∗

in O(n log m) time.

Lemma 4.1.

(i) {j ∈ N | p(j) < u(j)} ⊆ X∗.

(ii) Let j ∈ X∗ and j′ ∈ N \ {j}. Suppose that there exists a time interval [e, f] satisfying the

following conditions: [e, f] ⊆ [r(j), d(j)], any portion of job j is not processed on [e, f], and

some portion of job j ′ is processed on [e, f]. Then, we have j ′ ∈ X∗.

Theorem 4.2. The problem P(m,B, c,N, F) can be solved in O(n log m log n) time. In partic-

ular, the problem Ide-SameR-ArbD can be solved in O(n log m log n) time.

We can solve the problem Uni-SameR-ArbD in a similar way as Ide-SameR-ArbD by using

the algorithm of Sahni and Cho [16]. The details of the proof is omitted.

Theorem 4.3. The problem Ide-SameR-ArbD can be solved in O(mn log n) time.

5 Uniform Parallel Machines with the Same Release/Due Dates

We apply the divide-and-conquer technique in Sect. 2 to the problem Uni-SameR-SameD. For the

description of the algorithm, we consider the problem Uni-SameR-SameD with a subset F ob jobs

(fixed-job set) such that p(j) = p(j) for j ∈ F . We denote this problem by P(M,N,F), where M

and N denote the sets of machines and jobs, respectively. Note that P(M,N, ∅) coincides with

the original problem Uni-SameR-SameD. It is assumed that the speed of machines are already

sorted and satisfy s1 ≥ s2 ≥ · · · ≥ sm.

5.1 The First Algorithm

The problem P(M,N,F) can be formulated as (LP) with the polymatroid rank function ϕ :

2N → R given by ϕ(X) = dSmin{m,|X|} (X ∈ 2N), where Sh =
∑h

i=1
si (h = 1, . . . ,m). It can

9

be decomposed (or reduced) into subproblems of smaller size, as follows. We assume that the

numbers {p(j) | j ∈ N} ∪ {p(j) | j ∈ N} is already sorted.

The next property is a direct application of Theorem 1.1 to the problem P(M,N,F).

Lemma 5.1. Let k ∈ N , and suppose that X∗ ∈ 2N satisfies (1.1). Then, there exists an optimal

solution q ∈ R
n of the problem P(M,N,F) satisfying the following properties, where h = |X∗|:

(i) if h < m, then q(X∗) = dSh, q(j) = p(j) (j ∈ Nk \ X∗), q(j) = p(j) (j ∈ X∗ \ Nk).

(ii) If h ≥ m, then q(N) = dSm and q(j) = p(j) (j ∈ N \ Nk).

Let k ∈ N be an integer with |Nk \F | = bn̂/2c, where n̂ = n−|F |, and suppose that X∗ ∈ 2N

satisfies (1.1). Such X∗ can be computed in O(n) time by Lemma 5.2 given below.

Lemma 5.2. Suppose that the sorted list of the numbers P ≡ {p(j) | j ∈ N} ∪ {p(j) | j ∈ N}

is given. For any X ∈ 2N , we can compute the value of ϕ̃(X) and a set Y∗ ∈ 2N with ϕ̃(X) =

ϕ(Y∗) + p(X \ Y∗) − p(Y∗ \ X) in O(n) time.

Let h = |X∗|. If h < m, then the problem P(M,N,F) can be decomposed into the following

two subproblems P(M1, N1, F1) and P(M2, N2, F2), where
{

M1 = {1, 2, . . . , h}, N1 = X∗, F1 = (F ∩ X∗) ∪ (X∗ \ Nk),

M2 = M \ M1, N2 = N \ X∗, F2 = (F \ X∗) ∪ (Nk \ X∗).

In addition, we update p and p by (3.1). Before solving the subproblems, we sort the numbers

P1 ≡ {p(j) | j ∈ N1} ∪ {p(j) | j ∈ N1} and P2 ≡ {p(j) | j ∈ N2} ∪ {p(j) | j ∈ N2}, which can be

done in O(n) time. Hence, the decomposition can be done in O(n) time.

If h ≥ m, then P(M,N,F) can be reduced to the subproblem P(M1, N1, F1), where M1 = M ,

N1 = N , and F1 = F ∪ (N \Nk). In addition, we update p by p(j) := p(j) (j ∈ N \Nk). Hence,

the reduction can be done in O(n) time as well.

The following result follows from Theorem 2.2 and the discussion above.

Theorem 5.3. The problem P(M,N,F) can be solved in O(n log n) time by the first algorithm.

In particular, the problem Uni-SameR-SameD can be solved in O(n log n) time.

We note that the time complexity of the first algorithm is optimal for Uni-SameR-SameD

when n = O(m) since sorting the speeds of m machines requires O(m log m) time.

5.2 The Second Algorithm

The running time of the first algorithm is dominated by the time for sorting the numbers in P.

To reduce the time complexity, we modify the first algorithm by using the information of the

fixed-job set, so that it does not require the sorted list. We assume that the min{m, |F |} largest

numbers in {p(j) | j ∈ F} and the number p(F) are given in advance.

Lemma 5.4. Suppose that the min{m, |F |} largest numbers in {p(j) | j ∈ F} and the number

p(F) =
∑

j∈F p(j) are given. For any X ∈ 2N , we can compute the value of ϕ̃(X) and a set

Y∗ ∈ 2N with ϕ̃(X) = ϕ(Y∗) + p(X \ Y∗) − p(Y∗ \ X) in O((n − |F |) + m log m) time.

10

Hence, we can compute X∗ ∈ 2N satisfying (1.1) in O((n − |F |) + m log m) time. Using the

set X∗ we decompose (or reduce) the problem P(M,N,F) into subproblems in the same way as

the first algorithm.

If |X∗| < m, then the problem P(M,N,F) can be decomposed into the two subproblems

P(M1, N1, F1) and P(M2, N2, F2). The second subproblem P(M2, N2, F2) is solved recursively

by the second algorithm, while the first subproblem P(M1, N1, F1) is solved by the first algo-

rithm in O(|M1| log |M1|) = O(m log m) time. Before solving P(M2, N2, F2), we compute the

min{m, |F2|} largest numbers in {p(j) | j ∈ F2} and the number p(F2), which can be done in

O((n − |F |) + m log m) time.

If |X∗| ≥ m, the problem P(M,N,F) is reduced to the subproblem P(M1, N1, F1), which

is recursively solved by the second algorithm. Before solving the subproblem, we compute the

min{m, |F1|} largest numbers in {p(j) | j ∈ F1} and the number p(F1), which can be done in

O((n − |F |) + m log m) time as well.

Let T2(m,n, n̂) denote the running time of the second algorithm for P(M,N,F). Then, the

following recursive formula holds:

T2(m,n, n̂) =





O(m log m) (if n̂ ≤ 1),

O(n̂ + m log m) + T2(|M2|, |N2|, |N2| − |F2|) (if n̂ ≥ 2, |X∗| < m),

O(n̂ + m log m) + T2(|M1|, |N1|, |N1| − |F1|) (if n̂ ≥ 2, |X∗| ≥ m).

Note that |N2| − |F2| ≤ dn̂/2e and |N1| − |F1| ≤ bn̂/2c by (2.1). Hence, we have T2(m,n, n̂) =

O(n̂ + m log m log n̂). As a preprocessing, we need to compute the min{m, |F |} largest numbers

in {p(j) | j ∈ F} and the number p(F), which requires O(n+m log m) time. Hence, the following

result holds.

Theorem 5.5. The problem P(M,N,F) can be solved in O(n+m log m log n) time by the second

algorithm. In particular, Uni-SameR-SameD can be solved in O(n + m log m log n) time.

References

[1] R. K. Ahuja, J. B. Orlin, C. Stein, R. E. Tarjan, Improved algorithms for bipartite network

flow, SIAM Journal on Computing 23 (1994), 906–933.

[2] J. Y. Chung, W.-K. Shih, J. W. S. Liu, and D. W. Gillies, Scheduling imprecise computa-

tions to minimize total error, Microprocessing and Microprogramming 27 (1989), 767–774.

[3] A. Federgruen and H. Groenevelt, Preemptive scheduling of uniform machines by ordinary

network flow techniques, Management Science 32 (1986), 341–349.

[4] S. Fujishige, Submodular Functions and Optimization, Second Edition, Annals of Discrete

Mathematics 58, Elsevier, 2005.

[5] G. Gallo, M. D. Grigoriadis, and R. E. Tarjan, A fast parametric maximum flow algorithm

and applications, SIAM Journal on Computing 18 (1989), 30–55.

11

[6] T. F. Gonzales and S. Sahni, Preemptive scheduling of uniform processor systems, Journal

of ACM 25 (1978), 92–101.

[7] D. S. Hochbaum and R. Shamir, Minimizing the number of tardy job unit under release

time constraints, Discrete Applied Mathematics 28 (1990), 45–57.

[8] W. Horn, Some simple scheduling algorithms, Naval Res. Logist. Quat. 21 (1974), 177–185.

[9] A. Janiak and M.Y. Kovalyov, Single machine scheduling with deadlines and resource de-

pendent processing times, European Journal of Operational Research 94 (1996), 284–291.

[10] J. Y.-T. Leung, Minimizing total weighted error for imprecise computation tasks and related

problems, Chapter 34 of Handbook of Scheduling (ed.: J. Y-T. Leung), Chapman & Hall,

2004, 34-1–34-16.

[11] J. Y.-T. Leung, V. K. M. Yu, and W.-D. Wei, Minimizing the weighted number of tardy

task units, Discrete Applied Mathematics 51 (1994), 307–316.

[12] S. T. McCormick, Fast algorithms for parametric scheduling come from extensions to para-

metric maximum flow, Operations Research 47 (1999), 744–756.

[13] R. McNaughton, Scheduling with deadlines and loss functions, Management Science 12

(1959), 1–12.

[14] E. Nowicki and S. Zdrza lka, A bicriterion approach to preemptive scheduling of parallel

machines with controllable job processing times, Discrete Appl. Math. 63 (1995), 237–256.

[15] S. Sahni, Preemptive scheduling with due dates, Operations Research 27 (1979), 925–934.

[16] S. Sahni and Y. Cho, Scheduling independent tasks with due times on a uniform processor

system, Journal of the ACM 27 (1980), 550–563.

[17] N. V. Shakhlevich and V. A. Strusevich, Pre-emptive scheduling problmes with controllable

processing times, Journal of Scheduling 8 (2005), 233–253.

[18] N. V. Shakhlevich and V. A. Strusevich, Preemptive scheduling on uniform parallel ma-

chines with controllable job processing times, Algorithmica, to appear.

[19] W.-K. Shih, C.-R. Lee, and C.-H. Tang, A fast algorithm for scheduling imprecise compu-

tations with timing constraints to minimize weighted error, Proceedings of the 21th IEEE

Real-Time Systems Symposium (RTSS2000) (2000), 305–310.

[20] W.-K. Shih, J. W. S. Liu, and J.-Y. Chung, Algorithms for scheduling imprecise computa-

tions with timing constraints, SIAM Journal on Computing 20 (1991), 537–552.

[21] W.-K. Shih, J. W. S. Liu, J.-Y. Chung, and D. W. Gillies, Scheduling tasks with ready

times and deadlines to minimize average error, ACM SIGOPS Operating Systems Review

23 (1989), 14–28.

12

Appendix

A Proofs

A.1 Proof of Lemma 2.1

Lemma 2.1 is immediate from the following proposition and the fact that there exists an optimal

solution q ∈ R
n of (LP) with q(X∗) = ϕ(X∗).

Proposition A.1 (cf. [4, Lemma 3.1]). Suppose that p1 ∈ R
X∗ (resp., p2 ∈ R

N\X∗) is a

feasible solution of (SLP1) with p1(X∗) = ϕ1(X∗) (resp., (SLP2) with p2(N \X∗) = ϕ2(N \X∗)).

Then, the direct sum p = p1 ⊕ p2 ∈ R
n of p1 and p2 defined by

(p1 ⊕ p2)(j) =

{
p1(j) (j ∈ X∗),

p2(j) (j ∈ N \ X∗)

is a feasible solution of (LP) with p(N) = ϕ(N). Conversely, for any feasible solution p ∈ R
n of

(LP) satisfying p(X∗) = ϕ(X∗), the restriction of p on X∗ (resp., on N \ X∗) yields a feasible

solution of (SLP1) with p1(X∗) = ϕ1(X∗) (resp., (SLP2) with p2(N \ X∗) = ϕ2(N \ X∗)).

A.2 Proof of Lemma 5.2

Recall that the function ϕ : 2N → R is given by ϕ(Y) = dSmin{m,|Y |} (Y ∈ 2N) and the

function value of ϕ(Y) depends only on the cardinality of Y . For i = 1, 2, . . . ,m − 1 we denote

Fi = {Y ∈ 2N | |Y | = i}. Since p and p are nonnegative vectors, it follows from (2.2) that

ϕ̃(X) = −p(N \ Nk) + min
Y ∈2N

{ϕ(Y) + p(X \ Y) + p((N \ X) \ Y)}

= −p(N \ X) + min
[
ϕ(N), min

Y ∈∪m−1

i=1
Fi

{ϕ(Y) + p(X \ Y) + p((N \ X) \ Y)}
]

= −p(N \ X) + min

[
dSm, min

0≤i≤m−1

{
dSi + min

Y ∈Fi

{p(X \ Y) + p((N \ X) \ Y)}

}]

= −p(N \ X) + min

[
dSm, min

0≤i≤m−1

{
dSi + p(X) + p(N \ X)

− max
Y ∈Fi

{p(X ∩ Y) + p((N \ X) ∩ Y)}

}]
. (A.1)

For i = 1, 2, . . . ,m, we denote by αi the i-th largest number in the set PX ≡ {p(j) | j ∈

X} ∪ {p(j) | j ∈ N \ X}. By using the sorted list of P, the values α1, α2, . . . , αm can be

computed in O(n) time. Then, we have

max
Y ∈Fi

{p(X ∩ Y) + p((N \ X) ∩ Y)} =

i∑

k=1

αk.

Hence, the value ϕ̃(X) can be computed in O(n) time by using the formula above. If the

minimum in the RHS of (A.1) is attained by dSm, then we can choose Y∗ = N ; otherwise, we

can choose Y∗ = {j1, j2, . . . , jk}, where jk ∈ N (k = 1, 2, . . . ,m) is the number with αk = p(jk)

or αk = p(jk).

13

A.3 Proof of Lemma 5.4

We prove the claim in a similar way as that for Lemma 5.2. Since

PX = {p(j) | j ∈ X \ F} ∪ {p(j) | j ∈ (N \ X) \ F} ∪ {p(j) | j ∈ F}

and (X \ F) ∪ ((N \ X) \ F) ⊆ N \ F , the m largest numbers in the set PX can be obtained in

O(|N \F |+ m log m) time. We can also compute the value p(X) + p(N \X) in O(|N \F |) time.

14

