
New Algorithms for Convex Cost Tension Problem with

Application to Computer VisionI

Vladimir Kolmogorov

Adastral Park Campus, University College London, Adastral Park, Martlesham Heath, IP5 3RE, UK

Akiyoshi Shioura

Graduate School of Information Sciences, Tohoku University, Sendai 980-8579, Japan

Abstract

Motivated by various applications to computer vision, we consider the convex cost tension
problem, which is the dual of the convex cost flow problem. In this paper, we first
propose a primal algorithm for computing an optimal solution of the problem. Our
primal algorithm iteratively updates primal variables by solving associated minimum cut
problems. We show that the time complexity of the primal algorithm is O(K · T (n, m)),
where K is the range of primal variables and T (n, m) is the time needed to compute
a minimum cut in a graph with n nodes and m edges. We then develop an improved
version of the primal algorithm, called the primal-dual algorithm, by making good use of
dual variables in addition to primal variables. Although its time complexity is the same
as that of the primal algorithm, we can expect a better performance in practice. We
finally consider an application to a computer vision problem called the panoramic image
stitching.

Key words: minimum cost tension, minimum cost flow, discrete convex function,
submodular function

1. Introduction

Let G = (V , E) be a simple undirected graph. We assume that if (u, v) ∈ E then
(v, u) 6∈ E . We consider the following optimization problem called the convex cost tension
problem:

(CTP): Minimize E(x) =
∑

u∈V

Du(xu) +
∑

(u,v)∈E

Vuv(xv − xu) subject to x ∈ Z
V ,

IPreliminary version appeared as two separate technical reports [24, 34].
Email addresses: vnk@adastral.ucl.ac.uk (Vladimir Kolmogorov),

shioura@dais.is.tohoku.ac.jp (Akiyoshi Shioura)

Preprint submitted to Discrete Optimization May 12, 2009

where Du : Z → R ∪ {+∞} (u ∈ V) and Vuv : Z → R ∪ {+∞} ((u, v) ∈ E) are convex
functions such that domDu = {α ∈ Z | Du(α) < +∞} and dom Vuv = {α ∈ Z |
Vuv(α) < +∞} are finite intervals. This problem is known as the dual of the convex
cost flow problem and extensively discussed in the literature (see, e.g., [1, 20, 31, 33]).
Recently, various applications of the problem (CTP) have been studied in the area of
image processing and computer vision (see, e.g, [8, 9, 11, 19, 21, 26, 36, 37, 38, 39]). In
this paper, we propose new algorithms for the problem (CTP) and prove a tight bound
for the number of iterations required by the algorithms.

Previous Algorithms. Let n = |V|, m = |E|, and K be a positive integer such that

|α − β| ≤ K (∀α, β ∈ dom Du, ∀u ∈ V). (1.1)

Ishikawa [21] and Ahuja et al. [2] reduce the problem (CTP) to a minimum s-t cut
problem in a graph with O(nK) nodes and O(mK2) edges. In the important special
case where the functions Vuv(·) are given by piecewise linear functions with a constant
number of breakpoints, the number of edges is reduced to O(mK). A disadvantage of
this approach is that it needs a large amount of memory (either O(mK2) or O(mK)).

Algorithms in [2, 21] can be seen as primal algorithms since they directly solve the
problem (CTP). An alternative is to solve the dual problem instead. Several dual al-
gorithms are proposed by Karzanov and McCormick [22] and Ahuja et al. [1]. The
worst-case complexity of the latter algorithm is O(nm log(n2/m) log(nK)), which is the
best known for (CTP).

It is known that the problem (CTP) can be reduced to a linear cost flow problem on
a graph with O(rm) edges, where r (≤ K) is the maximum number of breakpoints of
piecewise-linear convex functions Du(·) and Vuv(·). Therefore, it is possible to use any
existing method for the linear cost flow problem. One of them, the primal-dual algorithm
of Ford and Fulkerson [13, 14], is related to the technique that we develop in this paper.
In particular, the two algorithms are equivalent in a special case when functions Du(·)
are linear and functions Vuv(·) have one breakpoint (r = 1). However, if r > 1 then
the techniques are different; our algorithm works with a graph with O(m) rather than
O(rm) edges.

Our Contributions. In this paper we propose two algorithms for the problem (CTP):
primal and primal-dual. Our primal algorithm finds an optimal solution of (CTP) by at
most O(K) computation of a minimum cut of a graph with n nodes and m edges. The
algorithm is similar to the steepest descent algorithm of Murota for the minimization
of L\-convex functions [29, 30, 31]. The minimization of L\-convex functions is a more
general problem than (CTP) (see Section 2.1 for the definition of L\-convexity). The
algorithm is also similar to that of Bioucas-Dias and Valadão [4] which is originally
applied to the following problem without functions Du(·):

(CTP0): Minimize E0(x) =
∑

(u,v)∈E

Vuv(xv − xu) subject to x ∈ Z
V .

It should be noted that the problem (CTP) can be easily reduced to the problem (CTP0),
while (CTP0) is apparently a special case of (CTP) (see Section 1.1).

2

Our major contribution is to provide a tight bound on the number of iterations, while
bounds in [4, 31] are much weaker. Our proof is based on the analysis of the L∞ distance
between the current feasible solution and an optimal solution, and it is shown that the
distance decreases monotonically in each iteration. The proof is applicable not only to
the problem (CTP), but also to the minimization of L\-convex functions. Indeed, our
analysis is based on the theory of L\-convex functions. Hence, our result also implies a
better bound on the number of iterations for Murota’s steepest descent algorithm. In
particular, our result shows that Murota’s algorithm as well as our primal algorithm
yields the best known technique for minimizing L\-convex functions.

One drawback of the primal algorithm is that it solves different min-cut/max-flow
problems independently, although these problems are strongly related. Thus, a natural
idea for speeding up computations is to use maximum flow obtained in one iteration as
an initialization for the next iteration. This is a motivation of our primal-dual method,
which is an improved version of the primal algorithm by making good use of dual variables
in addition to primal variables. This method can be viewed as a generalization of the
primal-dual method of Ford and Fulkerson [13, 14] for linear costs to convex costs. Our
primal-dual algorithm is also closely related to (but different from) the out-of-kilter
algorithm and the successive shortest path algorithm for the convex cost flow problem
(see, e.g., [3, 27, 33]) since both of the algorithms as well as their analysis use similar
primal-dual techniques. Our contribution with regard to the primal-dual algorithm is to
analyze the behavior and the running time of the algorithm from the viewpoint of the
convex cost tension problem, not of the convex cost flow problem.

The time complexity of both algorithms is O(K · T (n, m)), where T (n, m) is the
running time of a single max-flow/min-cut computation on a graph with n nodes and
m edges. This is worse than the complexity of the algorithm in [1]. Our techniques,
however, have a practical advantage: they rely only on a max-flow/min-cut algorithm,
which is more readily available. For example, it is possible to use a max-flow/min-cut
algorithm that is specifically tuned to computer vision problems [7]. Experimental results
of our algorithms are shown in Section 4

Although the algorithms described above are pseudo-polynomial, it is possible to
apply proximity scaling technique to get an algorithm polynomial in log K rather than
K (see, e.g., [30, Sec. 10.3.2]). In particular, combining proximity scaling technique with
our algorithms yields the time complexity O(n log K · T (n, m)), as shown in Section 2.3.

Other Related Work. Hochbaum [19] gives a very efficient algorithm for a special case
of (CTP). Namely, if functions Vuv are given as Vuv(xv − xu) = λuv |xv − xu|, then
the technique in [19] has almost the same time complexity as that of a single max-flow
computation on a graph with n nodes and m edges. Similar ideas appear in [9, 11, 36, 37,
38]. The method is applicable to the problem of image restoration using total variation
minimization [9, 11, 19, 36].

If functions Du(·) are arbitrary and Vuv(·) are convex, then the problem can be
solved exactly in time T (nK, mK2) or T (nK, mK), depending on the structure of the
functions Vuv [2, 21]. If both Du(·) and Vuv(·) are arbitrary then the problem becomes
NP-hard. Boykov et al. [8], Kleinberg and Tardos [23], and Komodakis and Tziritas [25]
give constant factor approximation algorithms in the case when the functions Vuv(·) are
metrics. Veksler [35] uses the same procedures as our primal algorithm, as a heuristic tool
for minimizing a function with nonconvex terms of the form Vuv(xv−xu) = λuv min{|xv−

3

xu|, 1}. For the problem (CTP0) with nonconvex Vuv(·), Bioucas-Dias and Valadão [4]
use their primal algorithm to obtain a good feasible solution.

Application to Computer Vision Problems. The problem (CTP) arises in many applica-
tions in computer vision such as panoramic image stitching [26, 39], image restoration [8],
minimization of total variation [11], and phase unwrapping in SAR images [4]. In such
applications, the node set V of the undirected graph G = (V , E) usually corresponds to
the set of pixels in a given image, and variable xu represents the label of the pixel u ∈ V
which must belong to a finite set of integers {0, 1, . . . , K−1}. For motion or stereo, labels
are disparities, while for image restoration they represent intensities. Functions Du(·)
encode unary data penalty functions, and Vuv(·) are pairwise interaction potentials. The
objective function of (CTP) is often derived in the context of Markov random fields [16];
a minimum of E corresponds to a maximum a-posteriori labeling x.

In this paper, we consider the panoramic image stitching problem which inspired our
work. Given different portions of the same scene with some overlap, the goal of panoramic
image stitching is to generate an output image which is similar to the original images and
does not have a visible seam. The approach of [26, 39] is to compute the image whose
gradients match the gradients of the two input images, which can be done by solving an
instance of (CTP). We apply our algorithms to some instances of (CTP) arising from
actual panoramic image stitching problems, and test the empirical performance of our
algorithms.

Outline. In Section 2, we describe a primal algorithm and prove a bound on the number
of iterations. In Section 3, we review the dual problem and present a primal-dual algo-
rithm. Finally, an application to the panoramic image stitching is discussed in Section
4. In Appendix we discuss the relationship between our primal algorithm and Murota’s
steepest descent algorithm.

1.1. Equivalence between (CTP) and (CTP0)

We discuss the equivalence between the two problems (CTP) and (CTP0). While
(CTP0) is a special case of (CTP), it is known that (CTP) can be reduced to (CTP0),
as shown below. Hence, (CTP) and (CTP0) are essentially equivalent to each other, and
any algorithm for the one problem can be adapted to the other.

Let E : Z
V → R ∪ {+∞} be the objective function of (CTP). Define a function

Ẽ : Z
Ṽ → R ∪ {+∞} by

Ẽ(x0, x) = E(x − x01) (x0 ∈ Z, x ∈ Z
V),

where 0 denotes a new vertex not in V , Ṽ = {0} ∪ V , and 1 ∈ Z
V is the vector with all

components equal to one. Then, we have

Ẽ(x0, x) = E(x − x01)

=
∑

u∈V

Du(xu − x0) +
∑

(u,v)∈E

Vuv(xv − xu) (x0 ∈ Z, x ∈ Z
V).

We put Ẽ = {(0, u) | u ∈ V} ∪ E and define a function V0u : Z → R ∪ {+∞} (u ∈ V) by

V0u(α) = Du(α) (α ∈ Z).
4

Input: initial feasible solution x := x◦ ∈ dom E.
Step 1: Set SuccessUp := false, SuccessDown := false.
Step 2: Do UP or DOWN in any order until SuccessUp = SuccessDown = true:

UP (do only if SuccessUp is false):
- Compute X+ ∈ argmin{E(x + χX) | X ⊆ V}.
- If E(x + χX+) = E(x), set SuccessUp := true; otherwise set x := x + χX+ .

DOWN (do only if SuccessDown is false):
- Compute X− ∈ argmin{E(x − χX) | X ⊆ V}.
- If E(x + χX−) = E(x), set SuccessDown := true; otherwise set x := x − χX− .

Step 3: Output x and stop.

Figure 1: Primal algorithm

Then, each V0u is a convex function and it holds that

Ẽ(x0, x) =
∑

(u,v)∈Ẽ

Vuv(xv − xu) (x0 ∈ Z, x ∈ Z
V).

Hence, we obtain an objective function of (CTP0). This shows that (CTP) can be reduced
to (CTP0).

2. Primal Algorithm

As we have mentioned in Introduction, our primal algorithm is very similar to those
in [4] and in [31]. It iteratively invokes the following subroutine: given a current feasible
solution x, compute the minimum of the function Ê(b) = E(x + σb), where σ = ±1
is fixed and b is a 0-1 vector. Function Ê(b) can be written as the sum of functions in
binary variables:

Ê(b) =
∑

u∈V

D̂u(bu) +
∑

(u,v)∈E

V̂uv(bu, bv),

where

D̂u(bu) = Du(xu + σbu), V̂uv(bu, bv) = Vuv((xv + σbv) − (xu + σbu)).

Note that function Ê(b) can be minimized in polynomial time by computing a minimum
cut of an appropriately constructed graph (see [6], for example).

Our primal algorithm is presented in Fig. 1, where for any subset X of V , we denote
by χX ∈ {0, 1}V the characteristic vector of X , i.e.,

(χX)u =

{

1 (u ∈ X),
0 (u ∈ V \ X).

Its difference from the algorithm of Bioucas-Dias and Valadão [4] is very minor: the latter
is applicable only to (CTP0) and uses only procedure UP. Murota’s algorithm can be
seen as a specialized implementation of our primal algorithm; while our algorithm has a
flexibility in the choice of the procedures UP and DOWN, Murota’s algorithm computes

5

both of X+ and X− and chooses a better one by comparing the function values of
E(x + χX+) and E(x−χX−); see Appendix for more discussion on Murota’s algorithm.

In the following, we analyze the number of iterations of our primal algorithm. This
analysis is a major contribution of our paper with regard to the primal algorithm. It
leads to a tight bound on the number of iterations improving the bounds in [4] and [31].
Bioucas-Dias and Valadão [4] show that if a feasible solution x is not an optimal solution,
then the objective function value E(x) is decreased in the next iteration. This gives a
non-polynomial bound on the number of iterations, assuming that E is an integer-valued
function. Murota [31] proves that his algorithm terminates in O(nK) iterations.

We will show that our primal algorithm terminates in O(K) iterations.

Theorem 2.1. Our primal algorithm finds an optimal solution of the problem (CTP) in
2K + 2 iterations.

Proof. This is an immediate corollary of a more general result (Theorem 2.8) to be shown
in Section 2.2.

Remark 2.2. The tight bound O(K) is originally shown in the technical report version
[24] of this paper. The same bound is also shown in Darbon’s PhD thesis [10], which
is published after [24]; indeed, [10] cites [24]. Recently, Bioucas-Dias and Valadão [5]
(the journal version of [4]) show that their algorithm for (CTP0) terminates in O(K)
iterations, where their proof is a simplified version of those in [10, 24].

Clearly, in some cases this bound is tight. For example, consider the following prob-
lem:

Minimize D1(x1) + D2(x2) subject to (x1, x2) ∈ Z
2,

where k is a positive integer and D1, D2 : Z → R ∪ {+∞} are functions defined by

D1(α) =

{

α (0 ≤ α ≤ k),
+∞ (otherwise),

D2(α) =

{

−α (0 ≤ α ≤ k),
+∞ (otherwise).

This problem is a special case of (CTP) with K = k and (0, k) is a unique optimal
solution. If the primal algorithm starts with x◦ = (k, 0), then it requires 2k+2 = 2K +2
iterations.

Our proof for the bound relies on the theory of discrete convex functions called L\-
convex functions. The next section gives some background on L\-convex functions.

2.1. L\-convex Functions

The concept of L\-convexity is introduced by Fujishige and Murota [15] as a variant
of L-convexity by Murota [28]. In this section we review some fundamental results on
L\-convex functions.

A function E : Z
V → R∪{+∞} with nonempty domE is called L-convex if it satisfies

the following properties:

(LF1) E(x) + E(y) ≥ E(x ∧ y) + E(x ∨ y) (∀x, y ∈ dom E),
(LF2) ∃r ∈ R such that E(x + λ1) = E(x) + λr (∀x ∈ domE, ∀λ ∈ Z),

6

where dom E = {x ∈ Z
V | E(x) < +∞} and the vectors x ∧ y, x ∨ y ∈ Z

V are defined
by

(x ∧ y)u = min{xu, yu}, (x ∨ y)u = max{xu, yu} (u ∈ V).

Throughout the paper, we assume that the value r in the property (LF2) is zero. Note,
without this condition an L-convex function E does not have a minimum.

A function E : Z
V → R ∪ {+∞} with domE 6= ∅ is called L\-convex if the function

Ẽ : Z
Ṽ → R ∪ {+∞} defined by

Ẽ(x0, x) = E(x − x01) (x0 ∈ Z, x ∈ Z
V) (2.1)

is L-convex, where 0 denotes a new element not in V and Ṽ = {0}∪V . L\-convex functions
are conceptually equivalent to L-convex functions, while the class of L\-convex functions
contains that of L-convex functions as a proper subclass. L\-convexity is equivalent to
the combination of submodularity and integral convexity [12] (see [30] for details).

The next property shows that the problem (CTP) (resp., (CTP0)) is a special case
of the minimization of an L\-convex function (resp., L-convex function).

Proposition 2.3 (cf. [30, Sec. 7.3]).
(i) The objective function E : Z

V → R ∪ {+∞} of (CTP) is L\-convex.
(ii) The objective function E0 : Z

V → R ∪ {+∞} of (CTP0) is L-convex with r = 0 in
(LF2).

L\-convexity of a function can be characterized by the following properties. We denote
by Z+ the set of nonnegative integers. For a vector x ∈ Z

V we define

arg max{xu | u ∈ V} = {u ∈ V | xu ≥ xv (∀v ∈ V)}.

Theorem 2.4 ([30, Th. 7.1, 7.7]). Let E : Z
V → R ∪ {+∞} be a function with

dom E 6= ∅.
(i) E is L\-convex if and only if for all x, y ∈ Z

V with {u ∈ V | xu > yu} 6= ∅, we have

E(x) + E(y) ≥ E(x − χW) + E(y + χW),

where W = arg max{xu − yu | u ∈ V}.
(ii) E is L\-convex if and only if for all x, y ∈ Z

V and λ ∈ Z+, we have

E(x) + E(y) ≥ E((x − λ1) ∨ y) + E(x ∧ (y + λ1)).

In particular, an L\-convex function E satisfies the submodular inequality E(x)+E(y) ≥
E(x ∧ y) + E(x ∨ y) (∀x, y ∈ dom E).

We denote by arg min E the set of minimizers of a function E : Z
V → R∪{+∞}, i.e.,

arg min E = {x ∈ dom E | E(x) ≤ E(y) (∀y ∈ Z
V)}.

Minimizers of an L\-convex function can be characterized by local optimality.

Theorem 2.5 ([30, Th. 7.14]). Let E : Z
V → R∪{+∞} be an L\-convex function and

x ∈ dom E. Then, x ∈ argmin E if and only if E(x) ≤ E(x + χX) for all X ⊆ V and
E(x) ≤ E(x − χX) for all X ⊆ V.

7

2.2. Analysis of Primal Algorithm

As shown in Proposition 2.3 (i), the problem (CTP) is a special case of the mini-
mization of an L\-convex function. In the rest of this section, we mainly consider the
minimization of an L\-convex function E : Z

V → R ∪ {+∞}, and show that the primal
algorithm finds an optimal solution in O(K∞) iterations, where

K∞ = max{||x − y||∞ | x, y ∈ dom E}.

For any vector x ∈ dom E, the vector x+ denotes the unique minimal vector in
arg min{E(z) | z ≥ x} and x− denotes the unique maximal vector in arg min{E(z) |
z ≤ x}. The existence of such x+ and x− follows from the submodularity of function E
(see Theorem 2.4 (ii)). To analyze the number of iterations, we define values ρ+(x) and
ρ−(x) for a vector x ∈ dom E as

ρ+(x) = ||x+ − x||∞, ρ−(x) = ||x− − x||∞.

The following optimality condition follows immediately from Theorem 2.5.

Lemma 2.6. For x ∈ dom E, if ρ+(x) = ρ−(x) = 0 then x ∈ arg min E.

Note that ρ+(x) = 0 (resp. ρ−(x) = 0) alone implies x ∈ argmin{E(z) | z ≥ x}
(resp. x ∈ argmin{E(z) | z ≤ x}), but does not imply x ∈ arg min E in general.

Each iteration of the primal algorithm increases neither of ρ+(x) nor ρ−(x) and
decreases strictly at least one of ρ+(x) and ρ−(x). The proof is given at the end of this
section.

Lemma 2.7. In each iteration of the primal algorithm, we have the following:
(i) If ρ+(x) > 0, then ρ+(x + χX+) = ρ+(x) − 1 and ρ−(x + χX+) ≤ ρ−(x).
(ii) If ρ−(x) > 0, then ρ−(x − χX−) = ρ−(x) − 1 and ρ+(x − χX−) ≤ ρ+(x).

Theorem 2.8.
(i) The output x of the primal algorithm satisfies x ∈ argmin E.
(ii) The number of iterations of the primal algorithm is bounded by ρ+(x◦)+ ρ−(x◦)+2,
which is further bounded by 2K∞ + 2.

Proof. The claim (ii) is immediate from Lemma 2.7 and the fact that ρ+(x) ≤ K∞ and
ρ−(x) ≤ K∞ for any x ∈ dom E. We then prove (i). We see from Lemma 2.7 that
ρ+(x) = ρ−(x) = 0 holds at the end of the algorithm. Therefore, the claim (i) follows
from Lemma 2.6.

In each iteration of the primal algorithm, we need to compute min{E(x + χX) |
X ⊆ V} or min{E(x − χX) | X ⊆ V}, which can be reduced to the submodular set
function minimization (cf. Theorem 2.4 (ii)). Hence, the running time of the primal
algorithm is given as follows, where Tsfm(n) denotes the time complexity for solving the
minimization of a submodular set function f : 2V → R with |V| = n. Currently, we have
Tsfm(n) = O(n6) by Orlin’s algorithm [32].

Corollary 2.9. The primal algorithm finds a minimizer of an L\-convex function E :
Z
V → R ∪ {+∞} in O(K∞ · Tsfm(n)) time.

8

We also note that if the function E is given as the objective function of (CTP), then
the integer K given by (1.1) satisfies K ≥ K∞. Hence, Theorem 2.1 follows immediately
from Theorem 2.8.

We now prove Lemma 2.7, where the following property is useful.

Lemma 2.10. Let x, y ∈ dom E.
(i) Suppose that x ≤ y and E(y) = min{E(z) | x ≤ z ≤ y}. Then, ρ+(y) ≤ ρ+(x) and
ρ−(y) ≤ ρ−(x). In particular, we have y+ = x+ ∨ y.
(ii) Suppose that x ≥ y and E(y) = min{E(z) | x ≥ z ≥ y}. Then, ρ+(y) ≤ ρ+(x) and
ρ−(y) ≤ ρ−(x). In particular, we have y− = x− ∧ y.

Proof. We prove (i) only. We note that y+ = x+ ∨ y implies ρ+(y) ≤ ρ+(x) since

ρ+(y) = ||y+ − y||∞ = ||(x+ ∨ y) − y||∞ ≤ ||x+ − x||∞ = ρ+(x).

[Proof of “y+ = x+ ∨ y”] By Theorem 2.4 (ii), we have

E(x+) + E(y) ≥ E(x+ ∨ y) + E(x+ ∧ y). (2.2)

Since x ≤ x+ ∧ y ≤ y, we have E(y) ≤ E(x+ ∧ y), which, together with (2.2), implies

E(x+) ≥ E(x+ ∨ y). (2.3)

Since y+ ≥ y ≥ x and x+ ∈ argmin{E(z) | z ≥ x}, we have

E(y+) ≥ E(x+). (2.4)

Similarly, since x+ ∨ y ≥ y and y+ ∈ argmin{E(z) | z ≥ y}, we have

E(x+ ∨ y) ≥ E(y+). (2.5)

It follows from (2.3), (2.4), and (2.5) that E(x+) = E(y+) = E(x+ ∨ y), which implies

y+ ∈ argmin{E(z) | z ≥ x}, x+ ∨ y ∈ argmin{E(z) | z ≥ y}.

It follows from the choices of x+ and y+ that x+ ≤ y+ and y+ ≤ x+ ∨ y. These
inequalities and y ≤ y+ imply y+ = x+ ∨ y.

[Proof of “ρ−(y) ≤ ρ−(x)”] We first show that x− ≤ y−. By Theorem 2.4 (ii), we
have

E(x−) + E(y−) ≥ E(x− ∨ y−) + E(x− ∧ y−). (2.6)

Since x− ∈ arg min{E(z) | z ≤ x} and x−∧y− ≤ x− ≤ x, we have E(x−) ≤ E(x−∧y−),
which, together with (2.6), implies E(y−) ≥ E(x− ∨ y−). Since y− ≤ x− ∨ y− ≤ y

and y− is the maximal vector in arg min{E(z) | z ≤ y}, we have y− = x− ∨ y−, i.e.,
x− ≤ y−.

We may assume that ρ−(y) > 0 since otherwise the inequality holds immediately.
Put λ = ρ−(y) and W = {u ∈ V | yu − (y−)u = λ}. By Theorem 2.4 (i), we have

E(y) + E(y−) ≥ E(y − χW) + E(y− + χW).

We also have E(y−) < E(y−+χW) by the definition of y− and the inequality y−+χW ≤
y. Hence, it holds that E(y − χW) < E(y). Since E(y) = min{E(z) | x ≤ z ≤ y}, if
y−χW ≥ x then we have E(y−χW) ≥ E(y), a contradiction. Hence, there exists some
u ∈ V such that xu = yu and u ∈ W . This implies that xu = yu = (y−)u +λ ≥ (x−)u +λ.
Therefore, ρ−(x) ≥ xu − (x−)u ≥ λ = ρ−(y).

9

Input: initial feasible solution x := x◦ ∈ dom E.
Step 1: Set α = 2dlog2(K∞/2n)e.
Step 2: Find an integer vector y that minimizes E(x + αy) and set x := x + αy.
Step 3: If α = 1, then stop (x is a minimizer of E).
Step 4: Set α := α/2 and go to Step 1.

Figure 2: Murota’s scaling algorithm

Proof of Lemma 2.7. We prove (i) only; the claim (ii) can be shown in the same way.
Put y = x + χX+ . Then, we have E(y) = min{E(z) | x ≤ z ≤ y}, which implies

ρ+(y) ≤ ρ+(x) and ρ−(y) ≤ ρ−(x) by Lemma 2.10. To prove ρ+(y) = ρ+(x) − 1, it
suffices to show that

S ⊆ X+, where S = arg max{(x+)u − xu | u ∈ V}.

If S ⊆ X+, then Lemma 2.10 implies the desired equation as follows:

ρ+(y) = ||y+ − y||∞ = ||(x+ ∨ y) − y||∞ = ||x+ − x||∞ − 1 = ρ+(x) − 1.

Assume, to the contrary, that S \ X+ 6= ∅. Put

S′ = argmax{(x+)u − xu − (χX+)u | u ∈ V} = S \ X+.

Theorem 2.4 (i) implies

E(x+) + E(x + χX+) ≥ E(x+ − χS′) + E(x + χX+ + χS′).

Since χX+ + χS′ = χX+∪S , we have E(x + χX+ + χS′) = E(x + χX+∪S) ≥ E(x + χX+),
where the inequality is by the choice of X+. Hence, we have E(x+) ≥ E(x+ − χS′), a
contradiction to the fact that x+ is the minimal vector in arg min{E(z) | z ≥ x} since
x+ − χS′ ≥ x.

2.3. Application of Scaling Technique

Scaling is one of common techniques in obtaining a polynomial-time algorithm from
a pseudo-polynomial-time algorithm. As shown in the previous section, our primal algo-
rithm is a pseudo-polynomial-time algorithm, i.e., the number of iterations depends on
K, not on log K. In this section, we consider an application of scaling technique to our
primal algorithm.

A scaling framework for L\-convex function minimization is already proposed by
Murota [31] (see also [30, Sec. 10.3.2]), which is shown in Fig. 2. We can use either of
our primal algorithm and Murota’s steepest descent algorithm to find a vector y in Step
2 since the function Eα : Z

V → R ∪ {+∞} defined by

Eα(y) = E(x + αy) (y ∈ Z
V)

is also an L\-convex function. By a proximity theorem for L\-convex functions [30,
Theorem 7.18], there exists a minimizer y of E(x +αy) such that −n ≤ yu ≤ n (u ∈ V).
Hence, Corollary 2.9 implies that Step 2 can be done in O(n · Tsfm(n)) time. Since the
number of scaling phases is O(log(K∞/2n)), we have the following:

10

Theorem 2.11. The scaling algorithm combined with our primal algorithm or Murota’s
steepest descent algorithm finds a minimizer of an L\-convex function E : Z

V → R∪{+∞}
in O(n log(K∞/2n) · Tsfm(n)) time.

The bound shown in Theorem 2.11 improves the previous bound O(n2 log(K∞/2n) ·
Tsfm(n)) in [31] by a factor of n.

3. Primal-Dual Algorithm

In this section, we explain our primal-dual algorithm, which is an improved version
of the primal algorithm by making good use of dual variables. For this purpose, we
first review the convex cost flow problem, which is the dual of the problem (CTP), in
Section 3.1. Based on this, we then present our primal-dual algorithm in Section 3.2.
The primal-dual algorithm also uses procedures UP and DOWN; however, during these
procedures the algorithm updates not only primal variables x but also dual variables
called flow. We show the validity of the algorithm and analyze the time complexity in
Section 3.3.

3.1. Convex Cost Flow Problem

It is well known that the convex cost flow problem can be obtained as the dual
of the problem (CTP) in the following way (see, e.g., [1], [20, Ch. IV], [33, Sec. 8]).
Let (V ,A) be a directed graph corresponding to the undirected graph (V , E), where
A = {(u, v) | (u, v) ∈ E} ∪ {(v, u) | (u, v) ∈ E}. A flow is a vector f ∈ R

V∪A satisfying

fuv = −fvu ((u, v) ∈ E) (antisymmetry),
fu =

∑

(u,v)∈E

fuv (u ∈ V) (flow conservation).

Given a flow f , we define a function Ef (x) : Z
V → R ∪ {+∞} as follows:

Ef (x) =
∑

u∈V

Du[−fu](xu) +
∑

(u,v)∈E

Vuv [−fuv](xv − xu), (3.1)

where for β ∈ R the functions Du[β] and Vuv [β] are respectively defined by

Du[β](α) = Du(α) + βα, Vuv [β](α) = Vuv(α) + βα (α ∈ Z).

It is not difficult to check that for any flow f we have Ef (x) = E(x) for all x ∈ Z
V .

Furthermore, the functions Du[β] and Vuv [β] are convex.
For a flow f , let us define a function H : R

V∪A → R ∪ {−∞} as

H(f) =
∑

u∈V

min
α∈Z

Du[−fu](α) +
∑

(u,v)∈E

min
α∈Z

Vuv [−fuv](α).

We note that minα∈Z Du[−fu](α) (resp., minα∈Z Vuv [−fuv](α)) is a concave function in
variable fu (resp., in variable fuv).

We now consider the following convex cost flow problem, which is the dual of (CTP):

(CFP): Maximize H(f) subject to f ∈ R
V∪A, f is a flow.

11

Input: initial feasible solution x := x◦

∈ dom E.

1. INITIALIZE-FLOW (updates f)

2. Set SuccessUp := false, SuccessDown := false.

3. Do UP or DOWN in any order until SuccessUp = SuccessDown = true:

UP (do only if SuccessUp is false):

- MAXFLOW-UP (updates x and f)

- If V+(x, f) = ∅, set SuccessUp := true

- Optional: DIJKSTRA-UP (updates x)

DOWN (do only if SuccessDown is false):

- MAXFLOW-DOWN (updates x and f)

- If V−(x, f) = ∅, set SuccessDown := true

- Optional: DIJKSTRA-DOWN (updates x)

4. Optional: DIJKSTRA-DOWN; set xmin := x.

5. Optional: DIJKSTRA-UP; set xmax := x.

Figure 3: Our primal-dual algorithm. Upon termination x is a minimizer of E, x
min is a unique minimal

minimizer, x
max is a unique maximal minimizer, and f is an optimal flow.

Clearly, H(f) is a lower bound of the function value Ef (x) = E(x), i.e., H(f) ≤ E(x)
holds for any flow f and any feasible solution x ∈ dom E. It turns out that strong duality
holds as well.

Theorem 3.1 (cf. [1, 20, 33]).
(a) [strong duality] H(f∗) = E(x∗) holds for any optimal solution f ∗ ∈ R

V∪A of (CFP)
and any optimal solution x∗ ∈ dom E of (CTP).
(b) [optimality condition] A flow f ∈ R

V∪A and a feasible solution x ∈ dom E are optimal
solutions of the problems (CFP) and (CTP), respectively, if and only if the following
conditions hold:

Du[−fu](xu) = min
α∈Z

Du[−fu](α) (∀u ∈ V), (3.2a)

Vuv [−fuv](xv − xu) = min
α∈Z

Vuv [−fuv](α) (∀(u, v) ∈ E). (3.2b)

We will prove that our algorithm finds a pair (x, f) satisfying the optimality condition
(3.2). Since the functions Du[−fu](·) and Vuv [−fuv](·) are convex, these conditions are
equivalent to

∆−Du[−fu](xu) ≤ 0 ≤ ∆+Du[−fu](xu),

∆−Vuv [−fuv](xv − xu) ≤ 0 ≤ ∆+Vuv [−fuv](xv − xu),

where we use the following notation for a function g : Z → R ∪ {+∞}:

∆−g(α) = g(α) − g(α − 1), ∆+g(α) = g(α + 1) − g(α) (α ∈ Z).

3.2. Algorithm

We are now ready to present our primal-dual algorithm. It maintains a feasible
solution x ∈ domE and a flow f ∈ R

V∪A satisfying the condition (3.2b), and iteratively
12

updates x and f so that the condition (3.2a) is satisfied. It is convenient to use the
following notation for sets of nodes violating the condition (3.2a):

V+(x, f) = {u ∈ V | ∆+Du[−fu](xu) < 0}, V−(x, f) = {u ∈ V | ∆−Du[−fu](xu) > 0}.

Note that since the function Du[−fu](·) is convex, we have V+(x, f) ∩ V−(x, f) = ∅.
Furthermore, the condition (3.2a) holds if and only if V+(x, f) = V−(x, f) = ∅.

The outline of the algorithm is shown in Fig. 3. We now give details of each procedure.

INITIALIZE-FLOW. Its goal is to set flow f so that the condition (3.2b) is satisfied for
every edge (u, v) ∈ E . Since ∆±Vuv [−fuv](xv −xu) = ∆±Vuv(xv −xu)−fuv, a necessary
and sufficient condition for flow fuv is

∆−Vuv(xv − xu) ≤ fuv ≤ ∆+Vuv(xv − xu).

After setting fuv, values fu are computed from the flow conservation constraint.

MAXFLOW-UP. This operation is similar to procedure UP of the primal algorithm, ex-
cept that it modifies not only feasible solution x but also flow f . We will show later that
it tries to move towards satisfying (3.2a). In particular, sets V+(x, f) and V−(x, f) will
not grow. The procedure can be summarized as follows.

First, we construct a directed graph Ĝ = (V̂ , Â) such that

V̂ = V ∪ {s, t},

Â = A ∪ {(s, u), (u, s) | u ∈ V \ V+(x, f)} ∪ {(u, t), (t, u) | u ∈ V+(x, f)},

where s and t are called the source and the sink, respectively. We also consider a capacity
ĉuv for (u, v) ∈ Â defined by

ĉuv = ∆+Vuv [−fuv](xv − xu), ĉvu = −∆−Vuv [−fuv](xv − xu) for (u, v) ∈ E ,
ĉsu = ∆+Du[−fu](xu), ĉus = 0 for u ∈ V \ V+(x, f),
ĉut = −∆+Du[−fu](xu), ĉtu = 0 for u ∈ V+(x, f).

We note that all of the capacities are nonnegative by the condition (3.2b) and the defi-
nition of V+(x, f). We then solve the following maximum flow problem:

Maximize
∑

(s,u)∈Â

f̂su

subject to f̂uv ≤ ĉuv (∀(u, v) ∈ Â),

f̂uv = −f̂vu (∀(u, v) ∈ Â),
∑

u:(u,v)∈Â

f̂uv = 0 (∀v ∈ V̂ \ {s, t}),

f̂ ∈ R
Â.

Finally, we update the flow f by using f̂ as follows:

fuv := fuv + f̂uv for (u, v) ∈ A,

fu := fu + f̂su for (s, u) ∈ Â,

fu := fu − f̂ut for (u, t) ∈ Â.
13

It is easy to see that the output flow f satisfies antisymmetry and flow conservation
constraints, since the same holds for flow f̂ .

A new feasible solution y is computed from a minimum s-t cut of the graph Ĝ. An
s-t cut (S, T) of the graph Ĝ is a pair of subsets of V̂ such that {S, T} is a partition of V̂
and s ∈ S, t ∈ T . We denote by cap(S, T) the capacity of an s-t cut (S, T), i.e.,

cap(S, T) =
∑

{ĉuv | (u, v) ∈ Â, u ∈ S, v ∈ T}.

A minimum s-t cut is an s-t cut (S, T) minimizing the capacity cap(S, T). If we obtain a
minimum s-t cut (S, T), then we set y = x+χX+ , where X+ = T \ {t}. As we will show
later, the output feasible solution y is the same as that of procedure UP in the primal
algorithm, i.e., X+ ∈ argmin{E(x + χX) | X ⊆ V}.

MAXFLOW-DOWN. This operation is the same as MAXFLOW-UP, except for the defi-
nition of the arc set Â and the update of x. The arc set Â is given by

Â = A ∪ {(s, u), (u, s) | u ∈ V−(x, f)} ∪ {(u, t), (t, u) | u ∈ V \ V−(x, f)},

Capacities ĉuv are defined by

ĉuv = ∆+Vuv [−fuv](xv − xu), ĉvu = −∆−Vuv [−fuv](xv − xu) for (u, v) ∈ E ,
ĉsu = ∆−Du[−fu](xu), ĉus = 0 for u ∈ V−(x, f),
ĉut = −∆−Du[−fu](xu), ĉtu = 0 for u ∈ V \ V−(x, f).

A new feasible solution y is computed from a minimum s-t cut (S, T) of the graph Ĝ by
y = x − χX− , where X− = S \ {s}.

DIJKSTRA-UP. This operation is optional. It does not affect the worst-case complexity
of the algorithm, but may improve empirical performance. In this procedure we fix flow
and compute a maximal feasible solution y ≥ x such that functions Du[−fu](·) are non-
increasing on [xu, yu] and the condition (3.2b) holds. If we denote du = yu − xu ≥ 0,
then these constraints are equivalent to

du ≤ dmax
u = max{d ∈ Z+ | Du[−fu](xu + d) ≤ · · · ≤ Du[−fu](xu + 1) ≤ Du[−fu](xu)},

dv − du ≤ dmax
uv = max{d ∈ Z+ | Vuv [−fuv](xv − xu + d) = Vuv [−fuv](xv − xu)},

du − dv ≤ dmax
vu = max{d ∈ Z+ | Vuv [−fuv](xv − xu − d) = Vuv [−fuv](xv − xu)}.

It is well known (see, e.g., [3]) that finding a maximal vector d satisfying these constraints
can be reduced to a single-source shortest path problem, and therefore such a vector d

can be computed efficiently by using Dijkstra’s algorithm.

DIJKSTRA-DOWN. This operation is similar to the previous one; we compute a minimal
feasible solution y ≤ x such that functions Du[−fu](·) are non-decreasing on [yu, xu] and
the condition (3.2b) holds. If we denote du = xu − yu ≥ 0, then these constraints are
equivalent to

du ≤ dmax
u = max{d ∈ Z+ | Du[−fu](xu − d) ≤ · · · ≤ Du[−fu](xu − 1) ≤ Du[−fu](xu)},

dv − du ≤ dmax
uv = max{d ∈ Z+ | Vuv [−fuv](xv − xu − d) = Vuv [−fuv](xv − xu)},

du − dv ≤ dmax
vu = max{d ∈ Z+ | Vuv [−fuv](xv − xu + d) = Vuv [−fuv](xv − xu)}.

14

3.3. Analysis of Primal-Dual Algorithm

First we analyze the behavior of the algorithm without procedures DIJKSTRA-UP and
DIJKSTRA-DOWN. In the theorem below we assume that the input pair (x, f ′) satisfies
the condition (3.2b). The proof is given at the end of this section.

Theorem 3.2.
1. Let (y, f) be the output of MAXFLOW-UP applied to (x, f ′). Then,
(a) The condition (3.2b) holds for (y, f).
(b) Any minimum s-t cut (S, T) of Ĝ satisfies T \ {t} ∈ argmin{E(x + χX) | X ⊆ V}.
(c) There hold V+(y, f) ⊆ V+(x, f ′) and V−(y, f) ⊆ V−(x, f ′).
(d) If ρ+(x) = 0, then V+(y, f) = ∅.
2. Let (y, f) be the output of MAXFLOW-DOWN applied to (x, f ′). Then,
(a) The condition (3.2b) holds for (y, f).
(b) Any minimum s-t cut (S, T) of Ĝ satisfies S \ {s} ∈ arg min{E(x − χX) | X ⊆ V}.
(c) There hold V+(y, f) ⊆ V+(x, f ′) and V−(y, f) ⊆ V−(x, f ′).
(d) If ρ−(x) = 0, then V−(y, f) = ∅.

Combining Lemma 2.7 and Theorem 3.2, we can show that the algorithm terminates
in at most 2K + 2 iterations and yields an optimal primal-dual pair (x, f) upon termi-
nation. Indeed, 1 (a) and 2 (a) of Theorem 3.2 imply that the condition (3.2b) always
holds. After at most K iterations of procedure UP, the quantity ρ+(x) becomes zero, and
therefore after at most K + 1 iterations the set V+(x, f) becomes empty. At this point
flag SuccessUp is set to true, and set V+(x, f) will remain empty. Similar argumentation
holds for procedure DOWN. When the algorithm terminates, both of the sets V+(x, f)
and V−(x, f) are empty, so the optimality condition (3.2) holds for the pair (x, f).

This analysis remains valid even with procedures DIJKSTRA-UP or DIJKSTRA-DOWN,
as shown below.

Theorem 3.3. Suppose that (x, f) satisfies the condition (3.2b). Let y be the output of
DIJKSTRA-UP or DIJKSTRA-DOWN applied to (x, f). Then,
(a) The condition (3.2b) holds for (y, f).
(b) There hold V+(y, f) ⊆ V+(x, f) and V−(y, f) ⊆ V−(x, f).
(c) There hold ρ+(y) ≤ ρ+(x) and ρ−(y) ≤ ρ−(x).

Proof. We consider only procedure DIJKSTRA-UP; the proof for procedure DIJKSTRA-
DOWN is completely analogous. The statements (a) and (b) follow directly from the
definition of y. From (a) and the non-increasing property of the functions Du[−fu](·)
on [xu, yu], it follows that E(y) = Ef (y) = min{Ef (z) | x ≤ z ≤ y} = min{E(z) | x ≤
z ≤ y}, which implies (c) by Lemma 2.10.

It can be seen that if procedure DIJKSTRA-UP is applied to an optimal pair (x, f)
then the output y is the maximal optimal solution. Indeed, according to Theorem 3.1 a
feasible solution y is optimal if and only if it satisfies

Du[−fu](yu) = Du[−fu](xu) (∀u ∈ V),

Vuv [−fuv](yv − yu) = Vuv [−fuv](xv − xu) (∀ (u, v) ∈ E).

For feasible solutions y ≥ x this is equivalent to saying that functions Du[−fu](·) are
non-increasing on [xu, yu] and the condition (3.2b) holds. By construction, DIJKSTRA-
UP finds the maximal feasible solution satisfying these conditions. Similarly, we can show

15

that applying DIJKSTRA-DOWN to an optimal pair (x, f) yields the minimal optimal
solution.

The following theorem allows to simplify slightly the algorithm’s implementation.
The proof is given at the end of this section.

Theorem 3.4.
1. Let (y, f) be the output of MAXFLOW-UP applied to (x, f ′). Then, applying DIJKSTRA-
UP to (x, f) and to (y, f) would yield the same feasible solution z.
2. Let (y, f) be the output of MAXFLOW-DOWN applied to (x, f ′). Then, applying
DIJKSTRA-DOWN to (x, f) and to (y, f) would yield the same feasible solution z.

Thus, if DIJKSTRA-UP is applied immediately after MAXFLOW-UP then it is not
necessary to update variables x in MAXFLOW-UP (and similarly for DOWN); that is,
MAXFLOW-UP updates only dual variables f and then DIJKSTRA-UP updates only
primal variables x in this implementation.

We now turn to the proofs of Theorems 3.2 and 3.4. We omit proofs of part 2 of
Theorems 3.2 and 3.4 since they are very similar to those of part 1. For simplicity,
we will assume without loss of generality that the flow f ′ is equal to zero; the general
case can be shown in the same way by replacing the functions Du(·) and Vuv(·) with
Du[−f ′

u](·) and Vuv [−f ′
uv](·), respectively.

Proof of Theorem 3.2, part 1(a). From the capacity constraints we get fuv ≤ ∆+Vuv(xv − xu),
−fuv = fvu ≤ −∆−Vuv(xv − xu). Therefore, we have

∆+Vuv [−fuv](xv − xu) = ∆+Vuv(xv − xu) − fuv ≥ 0,

∆−Vuv [−fuv](xv − xu) = ∆−Vuv(xv − xu) − fuv ≤ 0,

which implies that Vuv [−fuv](xv−xu) = minα∈Z Vuv [−fuv](α). Thus, if yv−yu = xv−xu,
then the condition (3.2b) holds for edge (u, v). Let us consider the case yv − yu =
xv − xu + 1. This can only happen when u ∈ S and v ∈ T , which means that edge (u, v)

must be saturated. Therefore, we have fuv = f̂uv = ĉuv = ∆+Vuv(xv − xu), implying
∆+Vuv [−fuv](xv − xu) = 0. Hence, we have

Vuv [−fuv](yv − yu) = Vuv [−fuv](xv − xu + 1) = Vuv [−fuv](xv − xu) = min
α∈Z

Vuv [−fuv](α).

The case yv − yu = xv − xu − 1 can be shown similarly.

Proof of Theorem 3.2, part 1(b). Let (S, T) be an s-t cut of the graph Ĝ, and put y =
x + χT\{t}. Then, we have

cap(S, T) =
∑

{ĉsu | u ∈ (T \ {t}) \ V+(x, 0)}+
∑

{ĉut | u ∈ (S \ {s}) ∩ V+(x, 0)}

+
∑

{ĉuv | (u, v) ∈ E , u ∈ S, v ∈ T}+
∑

{ĉvu | (u, v) ∈ E , u ∈ T, v ∈ S}

=
∑

{∆+Du(xu) | u ∈ T \ {t}} −
∑

{∆+Du(xu) | u ∈ V+(x, 0)}

+
∑

{∆+Vuv(xv − xu) | (u, v) ∈ E , u ∈ S, v ∈ T}

−
∑

{∆−Vuv(xv − xu) | (u, v) ∈ E , u ∈ T, v ∈ S}

= E(y) − E(x) −
∑

{∆+Du(xu) | u ∈ V+(x, 0)}.
16

This equation shows that (S, T) is a minimum s-t cut if and only if T\{t} ∈ arg min{E(x+
χX) | X ⊆ V}.

Proof of Theorem 3.2, part 1(c). We consider two possible cases.
[Case 1: u ∈ V+(x, 0)] We need to show that u /∈ V−(y, f). By the definition

of capacity, we have −fu = f̂ut ≤ ĉut = −∆+Du(xu), i.e., ∆+Du[−fu](xu) ≤ 0 holds.
Hence, we have

∆−Du[−fu](yu) ≤ ∆−Du[−fu](xu + 1) = ∆+Du[−fu](xu) ≤ 0,

where the first inequality follows from yu ≤ xu + 1 and convexity of Du[−fu](·). This
implies u /∈ V−(y, f).

[Case 2: u /∈ V+(x, 0)] We first show that u /∈ V+(y, f) holds. By the definition of

capacity, we have fu = f̂su ≤ ∆+Du(xu), i.e., ∆+Du[−fu](xu) ≥ 0 holds. This implies

∆+Du[−fu](yu) ≥ ∆+Du[−fu](xu) ≥ 0,

where the first inequality follows from yu ≥ xu and convexity of Du[−fu](·). Hence,
u /∈ V+(y, f).

Now suppose that u /∈ V−(x, 0), i.e., ∆−Du(xu) ≤ 0. We need to show that u /∈
V−(y, f). If yu = xu, then this follows from

∆−Du[−fu](yu) = ∆−Du(xu) − fu ≤ 0.

If yu = xu + 1, then u ∈ T , implying that edge (s, u) must be saturated, i.e., fu = f̂su =
∆+Du(xu). Therefore, we have

∆−Du[−fu](yu) = ∆+Du[−fu](xu) = ∆+Du(xu) − fu = 0.

This implies u /∈ V−(y, f).

Proof of Theorem 3.2, part 1(d). We show that u /∈ V+(y, f) for all u ∈ V . For nodes
u /∈ V+(x, 0) this follows from part (c). Let us consider a node u ∈ V+(x, 0). The
condition ρ+(x) = 0 means that ∅ ∈ argmin{E(x+χX) | X ⊆ V}. Therefore, according
to part 1(b), cut (V ∪ {s}, {t}) is a minimum s-t cut of the graph Ĝ. Thus, edge (u, t)

must be saturated, i.e., fu = −f̂ut = −ĉut = ∆+Du(xu). This implies that

∆+Du[−fu](yu) ≥ ∆+Du[−fu](xu) = ∆+Du(xu) − fu = 0,

implying u /∈ V+(y, f), as desired.

Proof of Theorem 3.4, part 1. Let us show that (i) Du[−fu](yu) ≤ Du[−fu](xu) for all
nodes u, and (ii) Vuv [−fuv](yv − yu) = Vuv [−fuv](xv − xu) for all edges (u, v). The
theorem will then follow from the description of DIJKSTRA-UP.

If yu = xu for node u then the fact (i) is trivial. Suppose that yu = xu + 1; we
need to show that ∆−Du[−fu](yu) = ∆+Du[−fu](xu) ≤ 0. If u ∈ V+(x, 0) then this

holds since u /∈ V−(y, f) by Theorem 3.2, part 1(c). If u /∈ V+(x, 0), then fu = f̂su =
ĉsu = ∆+Du(xu) since u ∈ T and edge (s, u) is saturated. Therefore, ∆+Du[−fu](xu) =
∆+Du(xu) − fu = 0.

Finally, the fact (ii) was shown earlier (see the proof of Theorem 3.2, part 1(a)).

17

4. Application to Panoramic Image Stitching

We discuss an application of our algorithms to panoramic image stitching.
Given two input images I1 and I2 defined on overlapping domains V1 and V2, the

goal of the panoramic image stitching is to compute an output image without a visible
seam. Levin et al. [26, 39] proposed several techniques for this problem. One of them,
GIST1 algorithm under l1 norm, is shown to outperform many other stitching methods.
It involves minimizing the following function for each color channel:

E(x) =
∑

(u,v)∈E1

w1
uv |(xv − xu) − (I1

v − I1
u)| +

∑

(u,v)∈E2

w2
uv |(xv − xu) − (I2

v − I2
u)|,

where (u, v) ∈ E i if and only if u, v ∈ V i are neighboring pixels for i = 1, 2. In other
words, we want the gradient of image x to match gradients of images I1 and I2. Weights
w1

uv and w2
uv are determined as follows. For edges (u, v) ∈ E1, if u, v ∈ V1 ∩ V2 we set

w1
uv = 1; otherwise set w1

uv = 2. Similarly, for edges (u, v) ∈ E2, if u, v ∈ V1 ∩ V2 we set
w2

uv = 1; otherwise set w2
uv = 2.

It is easy to see that an optimal solution for the minimization of the function E
is determined only up to an additive constant. Similar to [26, 39], we computed this
constant so that median intensity of I1 in V1 matches that of the output image. This
does not uniquely determines the solution, however, since there may be multiple optimal
solutions x satisfying this requirement. Levin et al. do not discuss how to choose between
them.

We propose the following technique. We put constraints xu ∈ [0, K − 1] on the
variables, where K is sufficiently large (e.g., 512). We then compute the minimal optimal
solution xmin, the maximal optimal solution xmax, and their average xav = b(xmin +
xmax)/2c which is also an optimal solution due to L\-convexity of the objective function
(cf. [30, Th. 7.7]). Furthermore, these optimal solutions have the minimum possible
range defined as maxu{xu}−minu{xu}+ 1. In our experiments it was very close to 256.
Having a small range may be advantageous since intensities must be mapped to interval
[0,255]; if the range is too large then some regions may become too dark or saturated.

Fig. 4 shows panoramas corresponding to feasible solutions xmin, xav, and xmax. It
can be seen that the solution xav looks significantly better than the other two. The
overlap area is too dark in xmin and too bright in xmax.

Algorithms tested. We tested the speed of several algorithms on the panoramic image
stitching application. We compared the speed of three different algorithms. The first
two are the primal-dual method without/with DIJKSTRA-UP and DIJKSTRA-DOWN. We
note that the primal-dual method without DIJKSTRA-UP and DIJKSTRA-DOWN can be
seen as a particular implementation of the primal method (see Sections 3.2 and 3.3). Pro-
cedure DOWN is applied only after SuccessUp becomes true. We used the max flow algo-
rithm of Boykov and Kolmogorov [7] available at http://www.cs.cornell.edu/People/vnk/software.html
(version 3.0).

The third technique that we tried is as follows. We converted the original problem to
the linear minimum cost flow problem, where we did not enforce constraints xu ∈ [0, K−
1]. We then applied an algorithm of Goldberg [17] available at http://www.avglab.com/andrew/soft.html
(version 4.0). It has one free parameter, namely scaling factor; we set it to 32 (results for
other factors were faster by at most one percent). The problem (CTP) can be converted

18

Figure 4: Results of panoramic stitching. First two columns: input images (courtesy of A. Zomet).
Rectangles show the area of overlap. Last three columns: results corresponding to x

min, x
av, and x

max,
respectively (note that images are cropped). The additive constant is chosen as described in the text.

to the linear cost flow problem in many different ways. We used a transformation with
the following property: if the initial feasible solution satisfied the optimality condition,
then so did the resulting linear minimum cost flow problem.1 In all codes we used 32-bit
integers.

We note that we did not test the cost scaling algorithm of Ahuja et al. [1]. Their
algorithm essentially solves the dual problem (CFP) instead of the primal problem (CTP)
by using the cost scaling technique similar to [17], and at the termination an optimal
solution (CTP) is obtained as a byproduct. Since the algorithm of Ahuja et al. [1] works
with the original graph, it could potentially be faster than converting the problem to
a linear minimum cost flow problem and then applying the algorithm in [17]. In our
application, however, graph sizes would differ only slightly, and we argue that direct
implementation of the technique in [1] is unlikely to beat the implementation in [17].

1More precisely, we do the following. We denote by x
◦ and by f◦ the initial primal and dual solutions,

respectively. (The initial flow f◦ may be non-zero during the second stage of the two-stage procedure,
described later.) Suppose that term Vuv [−f◦

uv](xv−xu) is represented by breakpoints b1 < b2 < . . . < bk

and slopes s0 < s1 < . . . < sk. For each breakpoint i = 1, 2, . . . , k we add an arc from node u to v

with cost −(x◦

v − x◦

u) + bi and the reverse arc from v to u with cost (x◦

v − x◦

u) − bi. Arc capacities
are computed as follows: (i) if si−1 ≤ 0 and si ≥ 0 then cuv = si, cuv = −si−1; (ii) if si−1 > 0 then
cuv = si − si−1, cvu = 0; (iii) if si < 0 then cuv = 0, cvu = si − si−1. Finally, if s0 < 0 or sk > 0 then
we add δ to the excess of node v and subtract δ from the excess of node u, where δ = s0 if s0 > 0 and
δ = sk if sk < 0. Unary terms are handled similar to pairwise terms. In fact, we can use the description
above, if we convert unary terms to pairwise terms as described in Section 1.1.

This reduction corresponds to converting the convex cost flow problem (CFP) to a linear minimum
cost flow problem. Note, in the first version of the paper [24] we used a similar procedure, only we
first applied the minimal change to flow f◦ to ensure that condition (3.2b) holds for all edges. Due to
this step the running times reported in [24] were significantly slower. Also, in [24] we used the reversed

graph.

19

Indeed, the latter is highly optimized and includes many heuristics which significantly
improve the empirical performance.

We neither test the algorithms in [2, 21, 26], although they are applicable to the
panoramic image stitching application. The algorithms from [2, 21] use a huge graph,
so it seems natural that it would be significantly slower. The paper of [26] uses some
iterative optimization technique which converges in the limit (and thus not a polynomial-
time algorithm).

Initialization and two-stage procedure. Algorithms were initialized with the following
feasible solution x◦: x◦

u = I1
u in region V1\V2, x◦

u = I2
u in V2\V1, and x◦

u = b(I1
u +I2

u)/2c
in V1∩V2. Besides applying an algorithm directly to the original problem, we also tested
the following two-stage procedure. First we solve the problem for a subgraph induced
by subset V ′ obtained by the erosion of the set V1 ∩ V2 by one pixel. In other words,
we fix nodes in V \ V ′ by adding terms C|xu − x◦

u| to the objective function for nodes
u ∈ V \ V ′, where C is a sufficiently large constant. (In implementation nodes which are
not connected to nodes in V ′ can be safely omitted.) Then we apply the algorithm to
the whole problem using the optimal solution and the flow obtained in the first stage as
an initialization.

Experiments. We used three datasets D0, D1, and D2 shown in Fig. 4. Their dimensions
are 449×193 for D0 and 577×257 for D1 and D2. The percentages of overlap area are
4.9%, 10.0% and 6.9%, respectively. We also used scaled-down datasets D0-s, D1-s and
D2-s (both X and Y dimensions are reduced by 2 times). Note that results for scaled-
down images visually look worse.

The table below shows running times in seconds (we measure the total time for 3 color
channels). The tests were performed on a machine with Intel Celeron 1.4GHz processor
in Microsoft Windows XP environment, using Microsoft Visual Studio 7.0 C++ compiler.

D0-s D1-s D2-s D0 D1 D2
primal-dual, no Dijkstra, 1 stage 12.8 25.7 29.3 61.6 148 160
primal-dual, no Dijkstra, 2 stages 3.55 15.0 15.9 22.8 101 115
primal-dual with Dijkstra, 1 stage 2.47 6.15 7.97 14.9 26.0 56.0
primal-dual with Dijkstra, 2 stages 0.44 0.71 0.75 1.93 3.19 3.17
linear minimum cost flow, 1 stage 1.00 2.49 2.21 10.9 19.3 21.5
linear minimum cost flow, 2 stages 0.94 0.34 0.80 3.93 1.83 1.56

While a naive implementation of the primal-dual algorithm is quite slow, the im-
plementation with Dijkstra computations and two-stage procedure is much faster and
competitive with the linear minimum cost flow approach. Our preliminary experiments
are not enough to get a robust conclusion and choose between the two. The result indi-
cate, however, that the two-stage procedure is a promising heuristic for the panoramic
image stitching application.

Acknowledgements

The authors thank Kazuo Murota for valuable comments on the manuscript. The
first author is supported by EPSRC. The second author is partially supported by Grant-
in-Aid of the Ministry of Education, Culture, Sports, Science and Technology of Japan.

20

Input: initial feasible solution x := x◦ ∈ dom E.
Step 1: Compute X+ ∈ arg min{E(x + χX) | X ⊆ V}.
Step 2: Compute X− ∈ arg min{E(x − χX) | X ⊆ V}.
Step 3: If E(x) = min{E(x + χX+), E(x − χX−)}, then output x and stop.
Step 4: If E(x + χX+) ≤ E(x − χX−), then set x := x + χX+ ; otherwise set x := x − χX− .
Step 5: Go to Step 1.

Figure 5: Murota’s steepest descent algorithm for the minimization of an L\-convex function. The
algorithm described here is slightly different from the original one in the choice of X+ and X−; in the
original algorithm X+ is the unique minimal minimizer and X− is the unique maximal minimizer.

A. Appendix: Analysis of Murota’s Steepest Descent Algorithm

Our primal algorithm is very similar to the steepest descent algorithm of Murota
[30, 31] for minimizing an L\-convex function (see Fig. 5). In this section, we discuss
the relationship between our primal algorithm and Murota’s algorithm. We will assume
throughout this section that E : Z

V → R∪{+∞} is an L\-convex function, and consider
the minimization of the function E.

Since Murota’s steepest descent algorithm for L\-convex function can be seen as a
specialized implementation of our primal algorithm, Theorem 2.8 implies that Murota’s
algorithm terminates in O(K∞) iterations, which is much better than the previous bound
O(K1) shown in [31], where

K1 = max{||x − y||1 | x, y ∈ dom E}.

In Appendix, we show the following:

• Our primal algorithm requires the same or larger number of iterations.

• Our primal algorithm requires the same or fewer total number of calls to the min-
imization procedure in UP and DOWN.

Note that one iteration of Murota’s algorithm makes two calls to the procedure for
minimizing a submodular function, so it is roughly twice as expensive as one iteration of
the primal algorithm.

A.1. Analysis of Steepest Descent Algorithm for L-convex Functions

In [31], Murota firstly proposes a steepest descent algorithm for L-convex functions,
which is then adapted to L\-convex functions through the relation (2.1). For the sim-
plicity of the proof, we firstly analyze the number of iterations required by the algorithm
for L-convex functions, and then restate the result in terms of L\-convex functions.

Murota’s steepest descent algorithm for L-convex functions is described in Fig. 6,

where Ṽ = {0} ∪ V and Ẽ : Z
Ṽ → R ∪ {+∞} is an L-convex function with dom Ẽ 6= ∅.

We note that Murota’s steepest descent algorithm coincides with the one by Bioucas-
Dias and Valadão [4] when it is applied to the problem (CTP0), which is a special case
of L-convex function minimization (see Proposition 2.3 (ii)).

21

Input: initial feasible solution x̃ := x̃◦ ∈ dom Ẽ.
Step 1: Compute X̃+ ∈ arg min{Ẽ(x̃ + χX̃) | X̃ ⊆ Ṽ}.

Step 2: If Ẽ(x̃) = Ẽ(x̃ + χX̃+), then output x̃ and stop.
Step 3: Set x̃ := x̃ + χX̃+ .
Step 4: Go to Step 1.

Figure 6: Murota’s steepest descent algorithm for the minimization of an L-convex function. The
algorithm described here is slightly different from the original one in the choice of X̃+; in the original
algorithm X̃+ is the unique minimal minimizer.

Given a vector x̃ ∈ Z
Ṽ , we denote by x̃+ the unique minimal vector in the set

arg min{Ẽ(z̃) | z̃ ≥ x̃} and define µ̃(x̃) = ||x̃+ − x̃||∞. It should be mentioned that the
definition of µ̃(x̃) does not change even if x̃+ is replaced by the unique maximal vector
in arg min{Ẽ(z̃) | z̃ ≤ x̃}.

The property (LF2) of L-convex functions implies that

(x̃◦)+ ∈ argmin{Ẽ(z̃) | z̃ ≥ x̃◦} ⊆ arg min Ẽ,

i.e., the vector (x̃◦)+ is a minimizer of the function Ẽ. On the other hand, it is easy to
see that Murota’s algorithm is the same as our primal algorithm except that procedure
DOWN is missing. Therefore, the discussion in Section 2.2 shows that Murota’s algorithm
outputs the vector (x̃◦)+ in µ̃(x̃◦) + 1 iterations.

Theorem A.1. The number of iterations of Murota’s steepest descent algorithm for
L-convex function Ẽ is equal to µ̃(x̃◦) + 1.

A.2. Analysis of Steepest Descent Algorithm for L\-convex Functions

We now analyze the number of iterations required by the steepest descent algorithm
for L\-convex functions.

The behavior of the steepest descent algorithm for an L\-convex function E with the
initial vector x◦ is essentially the same as that of the steepest descent algorithm for the
L-convex function Ẽ defined by (2.1) with the initial vector ỹ◦ = (0, x◦) ∈ Z × Z

V . The
correspondence between the two steepest descent algorithms is as follows (see [31]):

L\-convex E L-convex Ẽ
x → x + χX ⇐⇒ ỹ → ỹ + (0, χX)
x → x − χX ⇐⇒ ỹ → ỹ + (1, χV\X)

where ỹ = (x0, x + x01) and x0 is a nonnegative integer representing the number of
iterations with “x → x − χX” so far.

For a vector x ∈ Z
V we define µ(x) = µ̃(0, x). As an immediate corollary of Theorem

A.1 we obtain the following bound on the number of iterations.

Theorem A.2. The number of iterations of Murota’s steepest descent algorithm for
L\-convex function E is equal to µ(x◦) + 1.

We will show that our primal algorithm requires the same or larger number of itera-
tions than Murota’s algorithm.

22

Theorem A.3. The number of iterations of our primal algorithm for L\-convex function
E is at least µ(x◦) + 1.

Proof. Let x be the output of our primal algorithm applied to x◦. Denote

d+ = max
[

0, max{xu − x◦
u | u ∈ V , xu > x◦

u}
]

,

d− = max
[

0, max{x◦
u − xu | u ∈ V , xu < x◦

u}
]

.

Clearly, the primal algorithm calls procedure UP (resp., DOWN) at least d+ + 1 (resp.,
d− + 1) times. We will show next that d+ + d− ≥ µ(x◦), which will imply the theorem.

Consider vector ỹ = (d−, x + d−1). Since Ẽ(ỹ) = Ẽ(0, x) and (0, x) is a minimizer
of Ẽ, vector ỹ is also a minimizer. Furthermore, ỹ ≥ (0, x◦). Thus, ||ỹ − (0, x◦)||∞ ≥
µ̃(0, x◦). It remains to notice that ||ỹ − (0, x◦)||∞ = d+ + d−.

We then show that our primal algorithm requires the same or fewer total number of
calls to the minimization procedure in UP and DOWN than Murota’s algorithm.

Theorem A.4. For any feasible solution x ∈ dom E there hold ρ+(x) ≤ µ(x) and
ρ−(x) ≤ µ(x).

Proof. We prove only the first inequality. Let x̃∗ be the minimal vector in arg min{Ẽ(ỹ) |
ỹ ≥ (0, x)}. Then, µ(x) = ||x̃∗ − (0, x)||∞. We will show next that (0, x+) ≤ x̃∗

(recall the definition of x+ in Section 2.2). This will imply the desired inequality since
ρ+(x) = ||(0, x+) − (0, x)||∞.

We define vectors ỹ = (y0, y) ∈ Z×Z
V and z̃ = (z0, z) ∈ Z×Z

V by ỹ = x̃∗ ∧ (0, x+)
and z̃ = x̃∗ ∨ (0, x+), respectively. Clearly, y0 = 0. We have

E(y) = Ẽ(ỹ) ≤ Ẽ(0, x+) + [Ẽ(x̃∗) − Ẽ(z̃)] ≤ Ẽ(0, x+) = E(x+),

where the first inequality follows from submodularity of Ẽ, and the second inequality
follows from the optimality of x̃∗ and the fact that z̃ ≥ (0, x). Since y ≥ x and
E(y) ≤ E(x+), we have x+ ≤ y. Thus, (0, x+) ≤ ỹ ≤ x̃∗, as claimed.

We note that our algorithm makes at most ρ+(x◦)+ρ+(x◦)+2 calls to the procedure
for minimizing a submodular function, while Murota’s algorithm makes 2µ(x◦) + 2 such
calls. Thus, the theorem implies that our algorithm makes the same of fewer number of
calls.

It should be mentioned that Murota’s algorithm can be implemented so that it calls
the procedure for minimizing a submodular function only once in each iteration. Instead
of computing both of X+ and X− and choosing a better one, we just need to compute
X̃+ ∈ argmin{Ẽ(x̃ + χX̃) | X̃ ⊆ Ṽ}, as in Murota’s algorithm for L-convex function,

and then compute X+ or X− by using X̃+.

References

[1] R. K. Ahuja, D. S. Hochbaum, J. B. Orlin, Solving the convex cost integer dual network flow
problem, Management Sci. 49 (2003) 950–964.

[2] R. K. Ahuja, D. S. Hochbaum, J. B. Orlin, A cut based algorithm for the convex dual of the
minimum cost network flow problem, Algorithmica 39 (2004) 189–208.

23

[3] R. K. Ahuja, T. L. Magnanti, J. B. Orlin, Network Flows: Theory, Algorithms, and Applications,
Prentice Hall, Englewood, NJ, 1993.

[4] J. Bioucas-Dias, G. Valadão, Phase unwrapping via graph cuts, in: Proc. of Pattern Recognition
and Image Analysis, 2nd Iberian Conf. (IbPRIA), LNCS 3533, Springer, Berlin, 2005, pp. 360–367.

[5] J. Bioucas-Dias, G. Valadão. Phase unwrapping via graph cuts, IEEE Trans. Image Process. 16
(2007) 698–709.

[6] E. Boros, P. L. Hammer, Pseudo-boolean optimization, Discrete Appl. Math. 123 (2002) 155–225.
[7] Y. Boykov, V. Kolmogorov, An experimental comparison of min-cut/max-flow algorithms for energy

minimization in vision, IEEE Trans. Pattern Anal. Mach. Intell. 26 (2004) 1124–1137.
[8] Y. Boykov, O. Veksler, R. Zabih, Fast approximate energy minimization via graph cuts, IEEE

Trans. Pattern Anal. Mach. Intell. 23 (2001) 1222–1239.
[9] A. Chambolle, Total variation minimization and a class of binary MRF models, in: 5th International

Workshop on Energy Minimization Methods in Computer Vision and Pattern Recognition, LNCS
3757, Springer, Berlin, 2005, pp. 136–152.

[10] J. Darbon, Composants logiciels et algorithmes de minimisation exacte d’énergies dédiées au traite-
ment des images, PhD thesis, Ecole Nationale Supérieure des Télécommunications, October 2005.
(In French)

[11] J. Darbon, M. Sigelle, A fast and exact algorithm for total variation minimization, in: Proc.
of Pattern Recognition and Image Analysis, 2nd Iberian Conf. (IbPRIA), LNCS 3533, Springer,
Berlin, 2005, pp. 351–359.

[12] P. Favati, F. Tardella, Convexity in nonlinear integer programming, Ricerca Operativa 53 (1990)
3–44.

[13] L. R. Ford, D. R. Fulkerson, A primal-dual algorithm for the capacitated Hitchcock problem, Naval
Res. Logist. Quart. 4 (1957) 47–54.

[14] L. R. Ford, D. R. Fulkerson, Flows in Networks, Princeton Univ. Press, Princeton, NJ, 1962.
[15] A. Fujishige, K. Murota, Notes on L-/M-convex functions and the separation theorems, Math. Pro-

gramming 88 (2000) 129–146.
[16] S. Geman, D. Geman, Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of

images, IEEE Trans. Pattern Anal. Mach. Intell. 6 (1984) 721–741.
[17] A. V. Goldberg, An efficient implementation of a scaling minimum-cost flow algorithm, J. Algo-

rithms 22 (1997) 1–29.
[18] A. V. Goldberg, R. E. Tarjan, A new approach to the maximum flow problem, J. ACM 35 (1988)

921–940.
[19] D. S. Hochbaum, An efficient algorithm for image segmentation, Markov random fields and related

problems, J. ACM 48 (2001) 686–701.
[20] M. Iri, Network Flow, Transportation and Scheduling—Theory and Algorithms, Academic Press,

New York, NY, 1969.
[21] H. Ishikawa, Exact optimization for Markov random fields with convex priors, IEEE Trans. Pattern

Anal. Mach. Intell. 25 (2003) 1333–1336.
[22] A. B. Karzanov, S. T. McCormick, Polynomial methods for separable convex optimization in uni-

modular linear spaces with applications, SIAM J. Comput. 4 (1997) 1245–1275.
[23] J. Kleinberg, E. Tardos, Approximation algorithms for classification problems with pairwise relation-

ships: metric labeling and Markov random fields, in: Proc. of 40th Annual Symp. on Foundations
of Computer Science (FOCS), IEEE Computer Society, Washington DC, 1999, pp. 14–23.

[24] V. Kolmogorov, Primal-dual algorithm for convex Markov random fields, Technical Report MSR-
TR-2005-117, Microsoft Research, 2005.

[25] N. Komodakis, G. Tziritas, A new framework for approximate labeling via graph cuts, in: Proc.
of 10th IEEE Int. Conf. on Computer Vision (ICCV), IEEE Computer Society, Washington DC,
2005, pp. 1018–1025.

[26] A. Levin, A. Zomet, S. Peleg, Y. Weiss, Seamless image stitching in the gradient domain, in: Proc.
of 8th European Conf. on Computer Vision, LNCS 3024, Springer, Berlin, 2004, pp. 377–389.

[27] M. Minoux, A polynomial algorithm for minimum quadratic cost flow problems, European J. Oper.
Res. 18 (1984) 377–387.

[28] K. Murota, Discrete convex analysis, Math. Programming 83 (1998) 313–371.
[29] K. Murota, Algorithms in discrete convex analysis, IEICE Trans. Inform. Syst., E83-D (2000) 344–

352.
[30] K. Murota, Discrete Convex Analysis, Society for Industrial and Applied Mathematics, Philadel-

phia, PA, 2003.
[31] K. Murota, On steepest descent algorithms for discrete convex functions, SIAM J. Opt. 14 (2003)

24

699–707.
[32] J. B. Orlin, A faster strongly polynomial time algorithm for submodular function minimization,

Math. Programming 118 (2009) 237–251.
[33] R. T. Rockafellar, Network Flows and Monotropic Optimization, Wiley, New York, NY, 1984.
[34] A. Shioura, Note on L\-convex function minimization algorithms: comparison of Murota’s and

Kolmogorov’s algorithms, Technical Report METR 2006-03, University of Tokyo, 2006.
[35] O. Veksler, Efficient graph-based energy minimization methods in computer vision, PhD thesis,

Cornell University, 1999.
[36] B. Zalesky, Network flow optimization for restoration of images, J. Appl. Math. 2 (2002) 199–218.
[37] B. Zalesky, Fast algorithms of Bayesian segmentation of images, preprint, arXiv:math/0206184v2

(2002).
[38] B. Zalesky, Efficient determination of Gibbs estimators with submodular energy functions, preprint,

arXiv:math/0304041v1 (2003).
[39] A. Zomet, A. Levin, S. Peleg, Y. Weiss, Seamless image stitching by minimizing false edges, IEEE

Trans. Image Process. 15 (2006) 969–977.

25

