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Abstract

We propose an efficient and accurate randomized approximation algorithm for computing
the price of European-Asian options. Our algorithm can be seen as a modification of
the approximation algorithm developed by Aingworth et al. (2000) into a randomized
algorithm, which improves the accuracy theoretically as well as practically. We also propose
a new option named Saving-Asian option which enjoys advantage of both of European-
Asian and American-Asian options. It is shown that our approximation algorithm also

works for pricing Saving-Asian options.
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1 Introduction

1.1 Background

Options are popular and important financial instruments in world financial markets. A (call) option
gives the right, but not the obligation, to buy something (usually a stock) at some point in the future
for a specified price called the strike price. If we have an option on a stock and the stock is worth more
than the strike price, then we can ezercise the option to buy the stock for less than you otherwise
could. The price of the option, often called the premium, is usually much less than the actual price of
the underlying stock. Options hedge risk more cheaply than stocks only, and provide a chance to get
large profit with a small amount of money if one’s speculation is good.

For example, suppose that you buy 1,000 units of a stock with the current price $200, and forecast
that the stock price will possibly go up to $300 at the end of the year. If your forecast comes true,
then you will gain $100,000; however, if the stock price goes down to $100, you will unfortunately lose
$100,000 which you cannot afford. Instead, suppose that you can buy at the premium $8 an option
which gives you the right to buy the stock at the strike price $220. If the stock price goes up to $300,
you will obtain $80 extra, called the payoff, for each unit of the option by exercising it and selling the
stock at the market price. Thus, if you buy 1,250 units of this option, you have a chance to gain the
total payoff of $100,000, reducing the maximum loss to be $10,000 which is just the total premium.
You may buy 2000 units of another option with the strike price $250 and the premium $2, and dream
to gain $100,000 with the maximum loss $4,000.

Here, it is natural to ask whether the option premiums $8 and $2 are fair or not. As shown in this
example, pricing of options is a central topic in financial engineering.

To compute the price of an option, it is needed to model the price movement of each individual
stock. Typically, it is modeled as geometric Brownian motion with drift. This yields a stochastic
differential equation, and its solution gives the option price. However, it is often difficult to solve this
differential equation, and indeed no simple closed-form solution is known for Asian options discussed
in this paper. Therefore, it is widely practiced to simulate Brownian motion by using a combinatorial
model, and obtain a solution on the model, which we call the combinatorial exact price or the eract
price, as an approximation of the solution obtained from the differential equation. One such combi-
natorial model is the binomial tree model [8], where the time period is decomposed into n time steps,
and Brownian motion is modeled by using a biased random walk on a directed acyclic graph called
a binomial tree of depth m. The combinatorial exact price obtained from the binomial tree model
converges to the option price given by the differential equation if n goes to infinity.

In the binomial tree model, the process of the movement of a stock price is represented by a path
in a binomial tree. An option is said to be path-dependent if the option’s payoff depends on the path
representing the process as well as the current stock price. Although path-dependency is often useful
in designing a secure option against risk caused by sudden change of the market, it makes the analysis

of the price of options quite difficult.



1.2 Our Problems and Results

In this paper, we consider the pricing of Asian option, which is a kind of path-dependent options. It is
known to be #P-hard in general to compute the exact price of path-dependent options on the binomial
tree model [6]. Therefore, it is desired to design an efficient approximation algorithm with provable
high accuracy, and various pricing techniques have been developed so far (see, e.g, [1, 2, 6, 7, 9]).

Furopean-Asian option is the simplest Asian option which allows exercise only on a expiration date.
A most naive method for computing the exact price of European-Asian options, called the full-path
method, is to enumerate all paths in the binomial tree model. Unfortunately, there are exponential
number of paths in the binomial tree, and therefore the full-path method requires exponential time.
Hence, the Monte Carlo method that samples paths in the binomial tree is popularly used to compute
an approximate value of the exact price. When a polynomial number of samples are taken by naive
sampling, however, the error bound depends on the volatility of the stock price, and the bound only
holds with high probability. See [10] for more accounts on the Monte Carlo method for option pricing.

Aingworth—-Motwani—Oldham [1] proposed the first polynomial-time algorithm with guaranteed
worst-case error bound, which enables us to avoid the influence of volatility to the theoretical error
bound. The idea is to aggregate exponential number of high-payoff paths by using mathematical
formulae during the run of an approximate aggregation algorithm based on dynamic programming and
bucketing. They proposed an O(n2k)-time algorithm (referred to the AMO algorithm), and proved
that its error is bounded by nX/k, where X is the strike price of the option and k is a parameter
giving the time-accuracy tradeoff.

Later, Akcoglu Kao Raghavan [2] presented various pricing techniques applicable to approxima-
tion algorithms such as the Monte Carlo method and the AMO algorithm. In particular, they use
a recursive version of the AMO algorithm and reduce the error bound to O(n%X /k) by spending
almost the same time complexity under the condition that the volatility of the stock is small. Quite
recently, Dai-Huang-Lyuu [9] developed an improved version of the AMO algorithm. Their algorithm
runs in the same time complexity as the AMO algorithm and has the error bound O(y/nX/k), which
is the best error bound so far.

In this paper, we propose a randomized algorithm with an O(n?k) time complexity and an
O(yv/nX/k) error bound which does not require a volatility condition. Our algorithm can be re-
garded as a slight modification of the AMO algorithm as well as a variant of the Monte Carlo method.
Thus, our algorithm enjoys advantages of both methods simultaneously. While algorithms on the
uniform model has been mainly considered in the literature [1, 2, 6, 7, 9], our algorithm and analysis
also work on the non-uniform model where the transition probabilities of the stock price may differ
at each node. We note that the analysis of the algorithm by Dai et al. [9], which has the same error
bound as ours, works only on the uniform model. Moreover, the error bound of our algorithm can be
improved to O(n'/*X/k) for the uniform model. Although we only consider the pricing of call options
on the binomial tree model, our algorithm can be easily modified to put options and to the trinomial
tree model as in [1, 2, 9].

The idea of our algorithm is as follows. By using novel random variables, we regard the aggregation
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Figure 1: A binomial tree of depth 3

process of the algorithm as a Martingale process with n 4+ 1 random steps. It can be shown that the
expected value of the output by our algorithm equals the exact price, and that the error of a single step
is bounded by X/k. Thus, we can apply Azuma’s inequality [3] to the Martingale process to obtain
the error bound O(y/nX/k). We also show the practical quality of the approximate value computed
by our algorithm by some numerical experiments; indeed, its accuracy is better by a factor of nearly
100 than that of the AMO algorithm when n = 35.

Inspired by the analysis, we then propose an option which is a composition of European-Asian and
American-Asian options, and show that our algorithm can be generalized to its pricing. American-
Asian options can be exercised at any date before the expiration date, and therefore is difficult to
anticipate the action of the option holder. This makes accurate pricing of American-Asian options
much harder than that of European-Asian options (see, e.g., [4, 5, 12]). Instead of American-Asian
option, we propose Saving-Asian option which permits early exercise but has a different payoff system
so that the action of the option holder can be anticipated more easily and the expected payoff can
be computed accurately. The payoff of Saving-Asian options depends on the average stock price, and
hence secures against the sudden change of the market. Furthermore, the option reduces risk for the
seller of the option when compared with American-Asian option, and therefore the price should be
cheaper. Hence, we believe that our new option and its analysis technique will be useful in theory as

well as in practice.

2 Preliminaries

2.1 The Binomial Tree Model

A binomial tree, also called a recombinant binary tree, of depth n is a leveled directed acyclic graph
defined as follows (see Figure 1). Each node is labeled as (i,7), where ¢ (0 < ¢ < n) denotes the level
and j (0 < j < i) denotes the numbering of the nodes in the i-th level. The node (0,0) in the 0-th
level is called the root, and each node (n, j) in the n-th level is called a leaf. Each non-leaf node (i, j)

has two children (i + 1,j) and (i + 1,5 + 1). Therefore, each non-root node (i,j) has two parents
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Figure 2: The uniform binomial tree model. The probability of reaching each node (resp., the stock

price at each node) is shown above the node (resp., below the node).

(t—1,j—1)and (i —1,7) if 1 <j <i—1, and each of (¢,0) and (4,7) has only one parent.

Let us consider a discrete random process simulating the movement of a stock price. We divide
the time from the purchase date to the expiration date of an option into n time periods, and the
i-th time step means the end of the i-th time period. In particular, 0-th (resp., n-th) time step is
the purchase (resp., expiration) date of the option. For ¢ = 0,1,...,n, let S; be a random variable
representing the stock price at the i-th time step, where Sy is the initial stock price known in advance.
The fundamental assumption in the binomial tree model is that in each time step the stock price S
either rises to u.S or falls to dS, where u and d are predetermined constants with 4 > d. Thus, we can
model the stock price movement by using a binomial tree (see Figure 2).

Suppose that we are at a non-leaf node (7,7) in the binomial tree model and the current stock
price is S. With probability p;;, we move to the node (i + 1, j) and the stock price rises to uS; with
probability 1 — p;;, we move to the node (i + 1, j + 1) and the stock price falls to dS. Thus, the stock
price at the node (4, ) is S;(j) = u*~d’ S.

The binomial tree model is said to be uniform if p;; = p for each node (i, j); otherwise it is non-
uniform. The uniform model has been widely considered [1, 2, 6, 7, 9] since p is uniquely determined
under the non-arbitrage condition of the underlying stock. The non-uniform model, however, is often
useful to deal with various stochastic models. In the uniform model, the probability that the random
walk reaches to (i, 7) is (;)pi_j(l —p)’, where (;) =4!/(i—j)!j!. We define r = up+d(1—p) — 1, which

corresponds to the risk-free interest rate for one time period in the risk-neutral probability model.

2.2 Options

Let X be the strike price of an option. The value of the option, which is a random variable, is called
payoff. In Black Scholes’ theory, the price of an option is given by the discounted expected value of the
payoff over the n time periods. Hence, it suffices for the option pricing to compute (or approximate)

the expected value of the payoff.



We adopt a convention to write F* for max{F,0}. FEuropean option is one of basic options, and
its payoff is given by (S, — X)* which is determined by the stock price S,, at the expiration date.
It is quite easy to compute the expected value of the payoff of European options under the binomial
tree model. A drawback of European options is that the payoff may be affected drastically by the
movement, of the stock price just before the expiration date; even if the stock price goes very high
during most of time periods, it may happen that the option does not make money at the end.

European-Asian option is more reliable for the holder than European option, and its payoff is given
by (A, —X)*, where A, = (3°1" ,Si)/(n+1) is the average of the stock prices during n time periods.
Let T; = g:o S; be the running total of the stock price up to the j-th time step. If T} is above the
threshold (n + 1)X, then the holder of the option will surely exercise it at the expiration date and
obtain the payoff of at least 7} /(n + 1) — X.

Our aim is to compute the expected value of the payoff of European-Asian options. A simple
method is to compute the running total T),(P) of the stock price for each path P in the binomial tree

together with the probability Pr(P) that the path occurs, and exactly compute

B((An = X)") =) { Pr(P) - <m X)+

n+1

P : a path from the root to a leaf}.

We call the expected value of the payoff computed as above the ezact value of the expected payoff,
and denote U = E((A,, — X)*). This simple method, however, needs exponential time since there are
2" paths in a binomial tree. The Monte Carlo method is a popular method to reduce computation
time, although we need a huge number of paths to assure a small provable error bound if we use naive

random sampling of paths.

2.3 Saving-Asian Options

American-Asian option allows the holder to exercise it at any time step and to receive A; — X if the
option is exercised at the i-th time step, where A; = T;/(i + 1). Apparently, American-Asian options
are much more advantageous to the holder than European-Asian options, and hence its price should
be more expensive. The difficulty of American-Asian options is that the holder’s action is highly path-
dependent. Even after the current running total exceeds (n + 1) X, the holder must decide whether to
exercise the option immediately. The holder’s decision depends both on the running total 7; and on
the stock price S;. Thus, its pricing with provable accuracy seems quite difficult.

To overcome this disadvantage of American-Asian options, we propose a new option named Saving-
Asian option. The holder of a Saving-Asian option can exercise it at any time step, and receive
e~(n=dro/nfTy _ (74 1)X}/(n + 1) if the option is exercised in the i-th time step, where €’ is the
risk-free interest rate for the whole period. Thus, it is an American-type option, but different from
the standard American-Asian option since it restricts the payoff for early exercise.

Saving-Asian options are clearly more advantageous for the holder than European-Asian options;
the holder has a choice to keep the option until the expiration date and obtain the payoff (A4, — X)*
which is exactly the same as that of European-Asian options. On the other hand, if the holder exercises
the option in the i-th time step and re-invest the money, the holder will have {T; — (i + 1)X}/(n+ 1)



in the n-th time step, which might be larger than 4, — X = {T,, — (n + 1)X}/(n + 1). Therefore,
even if the stock price will drastically go down after high-price periods, the holder can exercise early
to avoid the reduction of the payoff. Moreover, early exercise has advantage that the holder can get
money for urgent need.

Intuitively, Saving-Asian options simulate accumulative investment permitting discontinuation,
where we can buy 1/(n + 1) unit of the stock by X/(n + 1) dollars for selling it by the market price
every time step, and stop at the i-th time step after investing (i + 1) X/(n + 1) dollars to receive the
profit obtained so far. Apparently, the payoff is path-dependent, and thus the option is not in the
category of Markovian American options (see [6] for the definition of Markovian options).

Similarly to American-Asian options, the the holder’s action seems to be path-dependent. However,
it is easier to analyze the best action assuming that the holder has the same model of the stock price
movement as the seller. In particular, once the running total of the option exceeds the threshold
(n + 1)X, the conditional expectation of the payoff can be computed analytically as in the case of
European-Asian options. Thus, the holder’s decision is dependent on the current stock price, but
independent of the history of the movement of the stock. We note that the holder may exercise before
the running total is above (n + 1)X, and in such a case the decision depends also on the current

running total; however, this kind of path-dependency can be treated efficiently.

3 A New Algorithm for Pricing European-Asian Options

3.1 The AMO Algorithm

We give a brief overview of the AMO algorithm [1] (see Figure 3). The AMO algorithm is based
on dynamic programming and computes an approximate value of the option’s expected payoff in the
range [U —nX/k,U] in O(n%k) time, where U is the exact value of the expected payoff and k is any
positive integer representing the time-error tradeoff.

For a path P from the root to a node (i,j) in the i-th level, the state of P is defined as a pair
(Si(4),T;) of the stock price S;(j) = u'~/d’Sy and the running total 7;. We define the weight of
the state (S;(j),T;) as the probability the path P occurs. The AMO algorithm is based on a simple
observation that if the running total of a current state is above the threshold (n + 1)X, then the
conditional expectation of the payoff at this state can be analytically computed (see Section 3.2), and
such a state can be pruned away.

Hence, we need to consider only the states with running total less than (n 4 1)X, which may be
exponential many. Rather than dealing with each unpruned state individually, we instead aggregate
the states by using buckets that divide the interval [0, (n 4+ 1)X). The algorithm creates k buckets
Bi(j,h) (h=0,1,...,k—1), each of which corresponds to the interval [bj,bp+1) = [h(n+1)X/k, (h +
1)(n + 1)X/k). Each unpruned state of a path terminating at the node (7, ) is stored in one of k
buckets according to its running total. Then, the algorithm approximates all states in the bucket
B;(j, h) by a single state (S;(j), br), where its weight w;(j, k) is given by the sum of the weights of all
states in B;(j, h).



.1: Let @ := 0. Initialize all buckets B;(j, k).
1.2: Insert the pair of the initial state (Sp,So) and its weight 1 in the bucket By(0, L(ni#lk)XJ )
[.3: for all levels i =0,1,...,n—1 do

14:  for all nodes (i,j) (j =0,1,...,7) do

L.5: for all buckets B;(j,h) (h=0,1,...,k — 1) at the node (7,j) do
1.6: Compute the sum w;(j, h) of the weights of all states in B;(j, h).
L7: Let T3(j, h) = by.
1.8: if T;(j, h) + Six1(j) < (n+1)X then
1.9: Insert the pair of the state (S;+1(7), T (7, h) + Si+1(J)) and its weight
pijwi(j, k) in the bucket By (], L(T Hudphid i J
[.10: else
[.11: Compute the payoff’s conditional expectation ®’ at the state
(Si+1(9), Ti (4, h) + Si1(4)), and let @ := @ + p;jw; (4, h) '
112: if 75(j, h) + Siy1(j + 1) < (n+1)X then
113: Insert the pair of the state (S;+1(j +1),7:(j, h) + Si+1(j + 1)) and its weight
(1 — pij) w4, h) in the bucket Biyq(j + 1, VTi(jvh)(;fgg;y“”’“J ).
[.14: else
1.15: Compute the payoff’s conditional expectation ®” at the state

(Siv1(J +1),Ti(j, h) + Sip1(j + 1)), and let & := & 4 (1 — p;;)w; (4, h) D",
.16: Output ®.

Figure 3: The AMO algorithm

Each step during the computation of the value T, yields the error of at most (n+1)X/k. Therefore,
the contribution in one step to the error of the average stock value A,, is at most X/k, and the error
in the estimation of A,, is bounded by nX/k. More precisely, the payoff & computed by the AMO
algorithm satisfies U —nX/k < & < U.

3.2 Extension to the Non-Uniform Model

While the AMO algorithm deals only with the uniform model in [1], we show that the AMO algorithm
can be extended to the non-uniform model. Indeed, the extension is quite straightforward except
for the computation of the payoff’s conditional expectation when the current running total is above
(n+1)X.

Suppose that we are at a node (7, j) in the i-th level, with the stock price S = S;(j) and the running
total T' (> (n+1)X). Then, the payoff’s conditional expectation is {T"+ >\, (1 +7)S}/(n+1) - X
on the uniform model [1]. This shows that on the uniform model the conditional expectation of extra
running total after the i-th level is path-independent and given by Z;:f(l +7)!S.

On the non-uniform model, the conditional expectation of extra running total h(z,j) at a node



(i,7) is still path-independent and can be computed by using the following recursive formula:

0 ifi=n
h(z,7) = ’
(5:4) {pij{huﬂ,j)+sz~+1<j>}+<1—pij>{h<z'+1,j+1>+si+1<j+1>} if i < n.

It takes O(n?) time to compute h(i,j) for all nodes (i, j), which does not affect the time complexity

for the remaining part of the algorithm.

Theorem 3.1. Let k be any positive integer. For a European-Asian option on a non-uniform binomial
tree model, the AMO algorithm computes a value ® satisfying U —nX/k < ® < U in O(n?k) time.

3.3 Our Modified Algorithm

The difference between our algorithm and the AMO algorithm is only in how to approximate the states
in a bucket. To approximate the states in a bucket B;(j, h), we randomly choose a representative state
among the states in the bucket, where a state with weight w is chosen with the probability w/w; (7, h).

That is, our algorithm is obtained by replacing .7 of the AMO algorithm in Figure 3 with the following;:

1.7: Choose a state (S;(j), 7)) in the bucket B;(j, h) randomly, where a state
with weight w is chosen with probability w/w;(j, h). Let T;(j,h) =T.

At a glance, this modification seems merely a heuristic, and does not lead to the improvement in
the theoretical bound. Let W be the payoff value computed by our modified algorithm. Indeed, the
error caused in one step is X/k in the worst case, and hence we can only prove that the worst case
error bound |U — ¥| is nX/k as in the AMO algorithm. The modified algorithm, however, can also be
viewed as sampling of paths, since each state stored in the buckets is equal to that of some existing
path. In our algorithm, the selection of paths is smartly done during the runtime of the algorithm; in
each step paths are clustered by using buckets, and a single path is selected from each bucket.

Since our algorithm is randomized, V¥ is a random variable depending on the coin-flips to choose
representatives of running totals in the buckets. Let Y; be a random variable giving the future value
of the payoff after running our algorithm up to the i-th level, i.e., after the choice of representatives
in all buckets has been determined up to the i-th level. By definition, Yy = U and Y,, = W.

The following lemma, shows that random variables Yp, Y7,...,Y, constitute a Martingale sequence.
Lemma 3.2. E(Y; | Yo, Y1,Y52,..,Y; 1) =Y, fori=1,2,... n.

Proof. Consider the set {a1,as,...,a,} of states in a bucket at a node of the i-th level before selecting
a representative. For [ = 1,2,...,q, let Y(aq;) be the expected payoff (exactly computed from the
model) for a path with the state a;, and w(q;) be the weight of a;. If the state a; is selected, it
contributes Y (a;)W to the payoff, where W = >~/ w(a;). Thus, the expected contribution of the
states after the selection is Y 1 (w(a;)/W)Y (a))W = > 7_; w(a;)Y (a;), where the right-hand side is

the expected contribution before the selection. O

Lemma, 3.2 also shows that the expected value of the payoff ¥ equals the exact value U of the
expected payoff, i.e., E(Y,,) = E(V) = U. From the argument in Section 3.1, we have |Y;—Y;_1| < X/E.

Thus, famous Azuma’s inequality [3] applies (see [11, Theorem 4.16] for the present form).



Theorem 3.3 (Azuma’s inequality). Let Zy, Z1,... be a Martingale sequence such that |Zj —

Zy—1| < ¢ for each k, where ¢y, is a constant depending on k. Then, we have

)\2
PI‘[|ZtZO|Z)\]§2€Xp<7> (Vt=1,2,..., YA >0).
231 4

In our case, we have Yy = U, and ¢ = X/k. Hence, Azuma’s inequality implies

A2k2

Pr||Y, —U| >\ <2 - —
Y, ~ U2 3 < 2o (- 5

> (VA > 0).

Thus, we can estimate the error bound of ¥ =Y, as an approximation of U as follows:

Theorem 3.4. Let k be any positive integer and ¢ be any positive real number. For a European-
Asian option on a non-uniform binomial tree model, our algorithm computes in O(n?k) time a value
U satisfying |V — U| < ey/nX/k with probability at least 1 — 2e="/2,

It should be noted that the original AMO algorithm and its variants [2, 9] have an important
advantage that they give a lower bound ® of U, whereas ¥ computed by our algorithm is not necessarily

a lower bound of U.

3.4 Experimental Results

We show some experimental results to illustrate the performance of our randomized approximation
algorithm. In particular, we compare the quality of the option price computed by our algorithm with
those by various other algorithms. We implemented the full path method to compute the exact price,
and approximation algorithms such as the naive Monte Carlo method (MC), the AMO algorithm
(AMO-LB), and the “basic algorithm” in Dai-Huang—Lyuu [9] (DHL-LB), and also variants of AMO-
LB and DHL-LB which compute upper bounds of the option’s exact price (AMO-UB, DHL-UB). The
experiment is done by a Pentium IV 2.60CGHz PC and all programs are implemented in C++.

In the experiment, we consider a uniform model with Sy = X = 100, v = 1.1, d = 1/u, pu+ (1 —
p)d = (1.06)"/™. The parameter k is set to 1,000 in each of AMO-LB, AMO-UB, DHL-LB, DHL-UB,
and our algorithm. While exactly k buckets are used at each node in the AMO algorithms and ours,
k is the average number of buckets used at each node in the DHL algorithms. In the experiment, only
one trial is made for each of the Monte Carlo method and our randomized algorithm.

Figure 4 gives the result of the experiment when 10 < n < 35, showing the ratio of the approximate
prices computed by approximation algorithms to the exact price computed by the full-path method.
The running time of AMO-LB, DHL-LB, and ours are almost the same, and the Monte Carlo method
takes 1500n sample paths so that it runs in almost the same time as other three algorithms. Note
that full-path method takes more than 9 hours when n = 35. The relative error of our algorithm is
always less than 0.0004, and smaller than those of the other algorithms with factor up to about 100 in
the range 25 < n < 35. This result shows that the error bound of our algorithm is much better than
the theoretical bound c¢/nX/k. When n = 35, the exact price is 14.639494 and the relative error of
the payoff obtained by our algorithm is less than 0.00005.
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Figure 4: Errors of option prices computed by four approximation algorithms
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We also run the naive Monte Carlo method spending computation time 100 times more, but its
accuracy is still worse than that of our algorithm. Note that we do not implement the AMO algorithm
with flexible bucket size, which is a heuristic reported to be better than the original AMO algorithm
[1], since the performance depends on tuning of parameters and the heuristic can be also combined
with our algorithm.

Figure 5 shows the result when 40 < n < 190. In this case, we do not compute the exact price
of the option since the full-path method takes at least 10 days even when n = 40. Instead, we apply
AMO-UB and DHL-UB to compute upper bounds of the exact price. It can be observed from Figure 5

that the option price computed by our algorithm is quite stable.

3.5 More Precise Analysis for the Uniform Model

Experimental results shown above indicate that the analysis in Section 3.3 overestimates the error.
In this section, we restrict our attention to the uniform model, and analyze the error bound of our
algorithm more precisely. In the following, we assume 0 < p < 1 and put @ = max{p,1 — p}. We also
assume, w.l.o.g., that p > 0.5 since the case p < 0.5 can be dealt with in the same way.
To refine the analysis of the random process, we consider that the algorithm processes nodes of
the i-th level one by one. We group the coin flips for the buckets of a node into one random process.
Let Y;; be the random variable giving the future value of the payoff just after the algorithm
processes the node (i,7) in the i-th level. Thus, we have a random process with > " (i + 1) =
(n+ 1)(n + 2)/2 steps. When the algorithm processes a node (7, ), the running totals of the paths
terminating at (4, j) are approximated with the error less than X/k, and the running totals of other
paths remain the same. Hence, the sequence Yy0,Y10,Y1,1,..., Youn—1,Ynn is a Martingale process
satisfying
|Y;7j+1—Yi’j|<w(i,j—|—l)X/k if0<j<i<n,

1
Yig10— Yig| <w(i+1,0X/k  if0<i<n, @

where w(i,j) = (;)pi_j(l — p)’ denotes the total weight of the paths terminating at (i, j).

In order to apply Azuma’s inequality to the analysis of the error bound, we estimate the value
n 4
Lp(n) = wli,j)?
i=1 j=0

as a function in n. As shown below, we have I',(n) = O(y/n) for any fixed p with 0 < p < 1. Hence,

we can show the following error bound.

Theorem 3.5. Let k be any positive integer and c be any positive real number. For a Furopean-Asian
option on a uniform binomial tree model with 0 < p < 1, our algorithm computes in O(nk) time a
value U satisfying |V — U| = O(en'/*X/k) with probability at least 1 — 2e=<"/2.

Proof. Since (1) holds, Theorem 3.3 yields the following inequality:

A2 A22
Pr{[ Y — U] 2 A < 26xp | e — 2exp (7>
2300 ijo(w(%])X/k)Q 2X2Tp(n)

11



which, together with T'y(n) = O(y/n), implies the statement of the theorem. O

We now start the analysis of the value I'j(n), where we use well-known Stirling’s formula:
Proposition 3.6 (Stirling’s formula). m! ~ 27m(m/e)™
We can prove I';(n) = O(y/n) easily by using Stirling’s formula when p = 1/2:

)= 23 ()] == 2 ()~ o

i=1 j=0 i=1
In general, we have I'y j5(n) < T'y(n) <n =To(n) ='1(n), and I';(n) converges to n when p converges
0 or 1. Hence, if p is close to 0 or 1 then the analysis of I',(n) becomes more complicated. In the
following, we give a rigorous proof for I',(n) = O(y/n).

Given a small positive constant §, let M be a sufficiently large positive integer such that
m]!
l-0< ——<1+9$ VYm > M). 2
V2rm(m/e)™ ( ) @
The following analysis ignores the small number § to improve the readability since our final result
(Theorem 3.5) only gives an asymptotic error bound.

For a small positive constant e, we take a constant (§ satisfying
1/2<B8<1,  BPA-pB)"F>1+e), (3)
where such § always exists since limg_,; B%(1 — B)1=# = 1. For example, if a = 2/3, we can take
B = 0.9 to attain 8°(1 — B)!=# ~ 0.72.
Lemma 3.7. For any integer ¢ with i — [3i] > M, the following inequalities hold:
i—[pi]

o 1
> wing)® < 27B8(1 — B)(1 + )%’ (4)

=0
[8i1-1 )
wij)? < ———, (5)
j=z‘zrﬁ;ﬂ+1 81 = )i

Z wli.q 2 1
j:zf[;ﬂ LI < 2131 — B)(1 +¢)% (6)

Proof. We first prove the inequality (6). Since 1 — p < p = «, it holds that

Z w5, )" < o Z Kaﬂ Soti—f8 -1 Kwﬂ <ol Kwﬂ

J=[B4] J=[B1
where the second inequality is by j > [8i] > i/2. By using Stirling’s formula and (3), we have

1 1 iita
<W> T Var ([B) P (i — [Bi]) T+
1 iit3

V2 (8i) 5 - (i - Bi)iP

1 1 i 1
V2Bl - B)i (55(1 —5)1_ﬁ> - 2rB(1— Bliai(1 +e)'’
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where the second inequality follows from the fact that log(x“”%) is a convex function in x in the
interval [1/2,+00). Hence (6) follows. The proof of (4) is the same as that for (6) and therefore
omitted.

Finally, we prove (5). For any j with ¢ — i < j < (31, Stirling’s formula implies

(&) /10 = () /1) )] 52 - e

where the inequality follows from the inequality i — fi < j < (i and the concavity of the function

Y(z) = x(i — z). Hence, we have
[Bi1-1 B o _ % o _
VABI=Bi- > wlig?< Y (2 )WO IS ( .>p21—f<1 Spy =1,
j=i—[Bi+1 j=i—[Bi]+1 i=0
from which (5) follows. O

Lemma 3.8. We have

where C' is a constant given by

CZ{w2

Jj=0

i>1, i— [Bi] <M}.

Proof. By Lemma 3.7, it holds that

n i n 1 1
g Z{Wﬂ<1—ﬂ><1+€>2"+ (1 — B)i }w

j=0 i=1

from which follows (7) since >0 (1 +¢)72 < 3% (1—¢)! < 1/e and S 1 (1/Vi) < 2y/n. O

This lemma shows that I'y(n) = O(y/n) for any fixed p with 0 < p < 1, which concludes the proof
of Theorem 3.5.

4 Pricing Saving-Asian Options

We present an approximation algorithm for the expected payoff of Saving-Asian options proposed in
Section 2.3, which can be obtained by slightly modifying our algorithm for European-Asian options.
We first show that if the running total of the current state is above the threshold (n + 1)X, then
the conditional expectation of the payoff can be computed analytically, as in the case of European-
Asian options. For each node (7, j) of a binomial tree, we define two values f(i, j) and g(7, j) to decide
whether to exercise the option at the node (7, ). For a leaf node (n, j), we define
fn ) =0, gng)= DX

13



If ¢ < n, then we recursively define

Si(4) — X

1 TSI

f(Z,j) = ma*x{pijg(i + 17]) + (1 _pij)g(i + 17.7 + 1)70}7 g(ivj) =

All the values f(i,4) and ¢(i,4) can be computed in a bottom-up fashion in O(n?) time. The value
f(i,7) (> 0) denotes the “value” of the right of postponing the exercise; f(i,j) = 0 means that there
is no merit in postponing the exercise, and f(i,j) > 0 means that the conditional expectation of the
extra payoff obtained by postponing the exercise is given by p;jg(i+1,5)+ (1 —p;;)g(i+1,5+1) (> 0).
Hence, the conditional expectation of the payoff can easily be computed when the current running
total is above (n + 1)X.

Proposition 4.1. Suppose that we are at the node (i,7) and the current running total T is above the
threshold (n+1)X. Then, the conditional expectation of the payoff is (T — (i+1)X)/(n+ 1)+ f(3,]).

To approximate the expected payoff of Saving-Asian options, we first run our algorithm for
European-Asian options explained in Section 3. We then backtrack the process of the algorithm
from leaves to the root of the binomial tree so that we can find early-exercise states and compute
(approximate) conditional expectation of the payoff (including the interest obtained by re-investment)
at each state.

Suppose that we are at a state (S;(j),7;) in the i-th level during the backtracking process. Note
that the option should be exercised at this state if the payoff obtained by the early exercise at this
state is more than the weighted average of the payoffs of its two “child” states (S;j;1(j),Tj,;) and
(Siy1(j+1), T ;) in the (i+1)-st level. If the current running total 7; is above the threshold (n+1)X,
the conditional expectation of the payoff can be analytically computed as shown in Proposition 4.1.

If T; < (n+1)X, then the conditional expectation of the payoff is given by

{Tz‘—(i—i-l)X
maxq ———

i'/ 17 i /!
| , pign + ( pj)n},

where (T; — (i +1)X)/(n + 1) is the payoff obtained by the early exercise at this state, and 1’ and n”
are the (approximate) conditional expectation of the payoff at the “child” states (S;y1(j), T}, ) and
(Siy1(j +1),T},), respectively.

In this way, we compute the (approximate) expected payoff of all states from the n-th level to the
0-th level. Then, the expected payoff at the unique state in the 0-th level is an approximate value of
the option’s expected payoff. It is easy to see that the backtracking process requires additional O(n?k)
time, which does not affect the total time complexity. Hence, we have the following theorem, where
the error bound can be analyzed in the similar way to Theorems 3.4 (the non-uniform model) and 3.5

(the uniform model).

Theorem 4.2. Let k be any positive integer and ¢ be any positive real number. For a Saving-Asian
option on a non-uniform binomial tree model, our algorithm computes in O(n’k) time a value W
satisfying ¥ — U| < ey/nX/k with probability at least 1 — 2e=%"/2. Moreover, on a uniform model the
error bound is refined to O(en'/*X/k).
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5 Concluding Remarks

In this paper, we proposed a randomized approximation algorithm for pricing European-Asian options,
and then generalized the algorithm to Saving-Asian options. Our algorithm can be further generalized

to path-dependent options satisfying the following conditions:

e The payoff of early exercise at a node (,7) in the i-th level after the movement of stock price
P = {S0.S1,..., Si} is given by v(i){31_o f1(St) — G(i,)}, where 0 < (i) < 1, G(i,5) > 0,
and each f; is a nondecreasing function in the stock value S;.

e There is a threshold value B such that once Zizo f+(St) > B, the option should be exercised in
the future.

e Once !  fi(Si) exceeds the threshold B, the difference between the payoff (including the
interest) of immediate exercise and the expected payoff obtained by delaying the exercise is

path-independent.

For example, y(i) = e~("=9ro/n £(S,) = S;/(n + 1), G(i,5) = (i + 1)X/(n + 1), and B = X for
Saving-Asian options. Thus, we may add a path-independent function to the payoff of Saving-Asian
options without losing the accuracy; for example, we may design a variation of Saving-Asian options
which pay back a portion of the price for early exercise.

It is often the case in the real financial market that an upper limit L is set to the payoff value of an
option since otherwise the seller may not afford to pay the payoff. For European-Asian options (resp.,
Saving-Asian options) with this modification, if 7; > (n+1)L+(n+1)X (resp., T; > (n+1)L+(i+1)X)
happens, the holder will simply receive the upper limit payoff. Our algorithm can be easily modified
to have the error bound O(n'/4(L + X)/k) and the time complexity O(n?k) on the uniform model.
If L is small (say, O(X)), our algorithm keeps high theoretical accuracy. However, if L is very large,
then the current error bound is not good, and some other techniques are required for better accuracy.

The experimental results in Section 3.4 imply that our theoretical analysis is not tight; indeed, we
may further refine the random process by regarding each coin flip (or set of coin flips) at a bucket
of each node as one step of a Martingale process. Intuitively, if n is large enough, this will further
improve the error analysis by a factor up to vk, which explains why the experimental performance is
so good; however, the theoretical analysis seems complicated and difficult.

It is also valuable to investigate the applicability of the AMO algorithm and our algorithm to

several existing options, and to design new useful options based on the insight obtained in this paper.
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Appendix for Referees: Proofs in Details

Detailed Proof of Lemma 3.7: We first prove the inequality (6). Since 1 — p < p = «, it holds that
i A AN i \]*_ i\]’
1) (9 B 9
i i
J=TB] j=rpi -
where the second inequality is by j > [5i] > i/2.

Claim 1:
(8)%%2 - (i — Bi) =0 < ([8i]) P12 - (i — ]y 1P

[Proof of Claim]  Since the function ¢(x) = log(a:m+%) = (z + 3)logz is a convex function in z in

the interval [1/2,00), we have
log[( — )"~ - (y + d)"3] = (e — d) + 9y +d) < plx) + o(y) = logla™F2 - V2]
for any z,y € R with >y > 0 and d € [0, (x — y)/2]. Hence, we have
(z — d):rfd+% (y +d)y+d+% < 20 E _yy+%‘

Then, the statement of the claim follow immediately from this inequality by putting x = [fi], y =
i— [Bi], and d = [Bi] — . [End of Claim]

Then, we have

(Wiﬂ> N Wﬂ!(iii [Bi])!

144 V2ri(i/e)’
(1= 82 \/2mlBil(16i1/€) 1P - \/2m(i — [BiD)((i — [8i])/e)i=T5

144 1 i
(=02 VR ([]) [P+ E - (i — [Ba]) 1A+
P iits
= (1=0)% V2 (Bi)fita . (i — Bi)i—Pits

1446 1 1 :
~ (102 /2B - B <ﬂﬁ(1 - 6)1—ﬂ>
< 149 1 ©)

(1-0)2/2rB8(1 — B)ici(1 + &)t

where the first inequality is by (2), the second by Claim 1, and the third by (3). By the inequalities
(8) and (9), we have

: . N2 % - (1+5)2 1 1 (1+5)2 1 1
J‘%ﬂ gy < O S g~ e (1t % (1= 00 2B~ ) (1T %

This implies (6) if we regard ¢ as 0.
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The proof for (4) is the same as that for (6) and therefore omitted.

Finally, we prove (5).

Claim 2: Ifi— i < j < Bi, then

[Proof of Claim]

Hence, it holds that

@) /10

A ()] < ()

For h > M, (2) implies
1—-§ 2% <(2h>< 1+9
(1+0)2/xh h (1-190)2xh'

22h

()/1G)ED)]

(1- oy 2%/ Vi

(1+0)* (2% //77)(220=D) |/ (i — ))

(1—-9)°> [mj(i —j) (1-9)° .
(1+0) i T

where the second inequality is by the inequality ¢ — 8¢ < j < (i and the concavity of the function

(z) = z(i — ). This implies the statement of the claim if we regard § as 0.

Claim 2 implies

[End of Claim]

[gi1—1 81,
. 2 j i—j12
VLB > e < Y (G )wa
j=i=[Bil+1 j=i=[Bil+1
24 ‘ )
< S (F)Paw = wra-m -
7=0
from which (5) follows. O
Detailed Proof of Lemma 3.8. By Lemma 3.7, it holds that
n) < zn: 2 o e (10)
pat 26(1 — B)(1 + )2 81 = B)i
Since ¢ is a sufficiently small positive number, we have (1 +¢)72 <1 — ¢, and therefore
= _1-e 1
Z Z (1—¢) — < (11)
=1 =1
We also have
= 1 "l
— < — = 2v/n. 12
; G e (12)
Combining the inequalities (10), (11), and (12), we have
1 2
I'< + v +C
mB(1 — B)e wB(1 — 3)
O
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