
Exact Bounds for Steepest Descent Algorithms of
L-convex Function Minimization

Kazuo Murota

Graduate School of Information Science and Technology, University of Tokyo, Tokyo

113-8656, Japan

Akiyoshi Shioura

Graduate School of Information Sciences, Tohoku University, Sendai 980-8579, Japan

Abstract

We analyze minimization algorithms for L\-convex functions in discrete con-
vex analysis, and establish exact bounds for the number of iterations re-
quired by the steepest descent algorithm and its variants.

Keywords: discrete convex function, analysis of algorithm, discrete
optimization, steepest descent algorithm

1. Results

In this paper, we discuss minimization algorithms for discrete convex
functions defined on integer lattice points called L\-convex functions. A
function g : Zn → R ∪ {+∞} is said to be L\-convex [14] if for every p, q ∈
dom g and every nonnegative λ ∈ Z+, it holds that

g(p) + g(q) ≥ g((p+ λ1) ∧ q) + g(p ∨ (q − λ1)), (1)

where dom g = {p ∈ Zn | g(p) < +∞}, 1 = (1, 1, . . . , 1), and for p, q ∈ Zn

the vectors p ∧ q and p ∨ q denote, respectively, the vectors of component-
wise minimum and maximum of p and q. The concept of L\-convex function
plays a primary role in the theory of discrete convex analysis [14], and there
exist many examples of L\-convex functions arising from applications in
various research areas such as discrete optimization, iterative auctions, and

Email addresses: murota@mist.i.u-tokyo.ac.jp (Kazuo Murota),
shioura@dais.is.tohoku.ac.jp (Akiyoshi Shioura)

Preprint submitted to Operations Research Letters April 15, 2014



computer vision (see Section 2; see also [14]). Some applications of L\-convex
functions in inventory systems can also be found in [11, 19].

We consider minimization of an L\-convex function g : Zn → R ∪ {+∞}
with arg min g 6= ∅. It is known that this problem can be solved by the
following steepest descent algorithm [15], where an initial vector p◦ ∈ dom g
is assumed to be given. Let N = {1, 2, . . . , n} and denote by eX ∈ {0, 1}n
the characteristic vector of X ⊆ N , i.e., eX(i) = 1 if i ∈ X and eX(i) = 0 if
i ∈ N \X.

Algorithm SteepestDescent
Step 0: Set p := p◦.
Step 1: Find σ ∈ {+1,−1} and X ⊆ N that minimize g(p+ σeX).
Step 2: If g(p+ σeX) = g(p), then output p and stop.
Step 3: Set p := p+ σeX and go to Step 1.

Theorem 1.1 ([15]). Suppose that dom g is bounded. Then, the algorithm
SteepestDescent outputs a minimizer of g in O(nK∞) iterations, where
K∞ = max{‖p− q‖∞ | p, q ∈ dom g}.

The bound O(nK∞) for the number of iterations is later improved to 2K∞+1
[13, Theorem 2.8].

The main aim of this paper is to give a refined analysis of this algorithm
in terms of the “distance” between the initial vector and a minimizer of g.
For a vector q ∈ Zn, denote

‖q‖+∞ = max
i∈N

max(0, q(i)), ‖q‖−∞ = max
i∈N

max(0,−q(i)).

Note that
‖q‖∞ = max(‖q‖+∞, ‖q‖−∞)

holds, and ‖q‖+∞ + ‖q‖−∞ serves as a norm of q (satisfying the axioms of
norms). Accordingly, the value ‖p∗− p‖+∞+ ‖p∗− p‖−∞ represents a distance
between two vectors p∗ and p. For p ∈ Zn, we define

µ(p) = min{‖p∗ − p‖+∞ + ‖p∗ − p‖−∞ | p∗ ∈ arg min g},

which measures the distance between the vector p and the set of minimizers
of g.

It is easy to see that µ(p) decreases by at most one if p is updated by
adding or subtracting a 0-1 vector, i.e., µ(p + σeX) ≥ µ(p) − 1 for σ ∈
{+1,−1} and X ⊆ N . This implies that µ(p) + 1 is a lower bound for the
number of iterations in SteepestDescent. This is also an upper bound as
follows.

2



Theorem 1.2. The algorithm SteepestDescent terminates exactly in
µ(p◦) + 1 iterations.

In some applications (see Section 2), the following variant of the steepest
descent algorithm can be found, where the vector p is always incremented.

Algorithm SteepestDescentUp
Step0: Set p := p◦, where p◦ ∈ Zn is a lower bound of some p∗ ∈ arg min g.
Step1: Find X ⊆ N that minimizes g(p+ eX).
Step2: If g(p+ eX) = g(p), then output p and stop.
Step3: Set p := p+ eX and go to Step 1.

For the analysis of SteepestDescentUp, we define

µ̂(p) = min{‖p∗ − p‖∞ | p∗ ∈ arg min g, p∗ ≥ p} (p ∈ Zn).

Theorem 1.3. Suppose that the initial vector p◦ ∈ dom g in the algorithm
SteepestDescentUp is a lower bound of some minimizer of g. Then,
the algorithm outputs a minimizer of g and terminates exactly in µ̂(p◦) + 1
iterations.

Similarly to SteepestDescentUp, we can consider an algorithm Steep-
estDescentDown, where the vector is decreased by a vector eX ∈ {0, 1}n
that minimizes g(p− eX).

Theorem 1.4. Suppose that the initial vector p◦∈dom g in the algorithm
SteepestDescentDown is an upper bound of some minimizer of g. Then,
the algorithm outputs a minimizer of g and terminates exactly in µ̌(p◦) + 1
iterations, where

µ̌(p) = min{‖p∗ − p‖∞ | p∗ ∈ arg min g, p∗ ≤ p} (p ∈ Zn).

Theorems 1.2, 1.3, and 1.4 show that the trajectory of a vector p gener-
ated by the steepest descent algorithms is the “shortest” path between the
initial vector and a minimizer of g. This reveals an additional advantage of
the steepest descent algorithms, which is important in applications such as
iterative auction and computer vision. The proofs of Theorems 1.2 and 1.3
are given in Section 3. The proof of Theorem 1.4 is essentially the same as
that for Theorem 1.3 and omitted.

Remark 1.5. The algorithms SteepestDescentUp and SteepestDes-
centDown are originally proposed for a subclass of L\-convex functions
called L-convex functions (see, e.g., [14, Section 10.3.1]); a function g :

3



Zn → R ∪ {+∞} is called L-convex if it is an L\-convex function satisfying
an additional property that

g(p+ 1) = g(p) + r (∀p ∈ Zn) (2)

for some real number r. While the class of L-convex functions is a subclass of
L\-convex functions, they are equivalent concepts in the sense that a function
g : Zn → R ∪ {+∞} is L\-convex if and only if a function g̃ : Z × Zn →
R ∪ {+∞} given by

g̃(p0, p) = g(p− p01) ((p0, p) ∈ Z× Zn)

is L-convex. Note that for an L-convex function g with arg min g 6= ∅,
every vector p ∈ dom g is lower and upper bounds of some p∗ ∈ arg min g
by the property (2). Hence, the minimization of an L-convex function can
be solved by SteepestDescentUp and SteepestDescentDown with an
arbitrarily chosen initial vector.

The minimization of an L-convex function often appears in applications,
and some existing algorithms used in such applications can be regarded as
special cases of SteepestDescentUp and SteepestDescentDown (see
Section 2).

An Example. We illustrate the behavior of the algorithms SteepestDe-
scent and SteepestDescentUp for an L\-convex function g : Z2 →
R ∪ {+∞} given by

dom g = {(p(1), p(2)) ∈ Z2 | 0 ≤ p(i) ≤ 4 (i = 1, 2)},
g(p(1), p(2)) = max(0,−p(1) + 2,−p(2) + 1,

−p(1) + p(2)− 1, p(1)− p(2)− 2) ((p(1), p(2)) ∈ dom g)

(see Figure 1). L\-convexity of g can be confirmed by checking the inequality
(1) for every pair of vectors p, q ∈ dom g; alternatively, we can use various
characterizations of L\-convex functions (see [14]).

If we apply SteepestDescent with the initial vector p◦ = (1, 4), then
the trajectory of vector p is one of the three paths depicted by dotted arrows
in Figure 1 and the minimizer found by the algorithm is either (3, 4) or (2, 3).
Note that µ(p◦) = 2 with

‖p∗ − p◦‖+∞ + ‖p∗ − p◦‖−∞ =

{
2 + 0 for p∗ = (3, 4),
1 + 1 for p∗ = (2, 3).

For another initial vector p◦ = (0, 0), the trajectory of vector p in Steep-
estDescent (or SteepestDescentUp) is one of the three paths depicted

4



0

0

0

1

2

0

0

0

0

1

1

0

0

0

1

2

1

1

1

1

3

2

2

2

2

O

Figure 1: Behavior of steepest descent algorithms. The number associated with each
integral lattice point shows the function value of g at that point. The shaded region shows
the set of minimizers of g.

by dotted arrows and the minimizer found by the algorithm is either (2, 1)
or (2, 2). We have µ(p◦) = 2 with

‖p∗ − p◦‖+∞ + ‖p∗ − p◦‖−∞ = 2 + 0 for p∗ = (2, 1), (2, 2),

and
µ̂(p◦) = ‖p∗ − p◦‖∞ = 2 for p∗ = (2, 1), (2, 2).

2. Examples of L\-convex Functions and Minimization Algorithms

In this section we show some examples of L\-convex functions arising
from applications. We also point out that the minimization algorithms used
in those applications can be regarded as special cases of the steepest descent
algorithms for L\-convex functions.

2.1. Hassin’s Algorithm for Minimum Cost Flow Problem

For a directed graph G = (V,E), nonnegative edge capacity c(e), and
edge cost γ(e) ∈ R for e ∈ E, the minimum cost flow problem is formulated
as:

Minimize
∑

(u,v)∈E

γ(u, v)x(u, v)

subject to
∑

v:(u,v)∈E

x(u, v)−
∑

v:(v,u)∈E

x(v, u) = 0 (u ∈ V ),

0 ≤ x(u, v) ≤ c(u, v) ((u, v) ∈ E).

5



The dual problem is given as:

Maximize gH(p) ≡
∑

(u,v)∈E

c(u, v) min{0, p(u)− p(v) + γ(u, v)}

subject to p(v) ∈ R (v ∈ V ).

We here assume that edge cost γ(u, v) is integer-valued. Then, there exists
an integral optimal solution to the dual problem, and we may assume that
p(v) ∈ Z (v ∈ V ) in the dual problem.

It is known that gH is an L\-concave function (i.e., −gH is L\-convex) if
we regard gH as a function in integer vectors (see [14]). In fact, gH is an
L-concave function since gH(p + 1) = gH(p) (∀p ∈ ZV ) (see Remark 1.5 for
the definition of L-convex function).

Hassin’s algorithm in [10] can be seen as an application of algorithm
SteepestDescentUp to the L-convex function −gH; see [16] for details.
We also mention that the algorithm by Chung and Tcha [5] for the minimum-
cost submodular flow problem, which is a generalization of Hassin’s algo-
rithm, can also be seen as a special implementation of algorithm Steepest-
DescentUp.

2.2. Discrete Optimization Approach in Computer Vision

Given an undirected graph G = (V,E) and univariate convex functions
ϕu : Z→ R∪{+∞} (u ∈ V ) and ψuv : Z→ R∪{+∞} ((u, v) ∈ E), consider
the following optimization problem:

(P): Minimize gCV(p) ≡
∑
u∈V

ϕu(p(u)) +
∑

(u,v)∈E

ψuv(p(v)− p(u))

subject to p ∈ ZV .

It is known that the objective function gCV of this problem is an L\-convex
function; moreover, if gCV does not contain the term

∑
u∈V ϕu(p(u)), then

it is an L-convex function (see [13, 14]).
The problem (P) arises in many applications in computer vision such as

panoramic image stitching [20], image restoration [4], minimization of total
variation [7], and phase unwrapping in SAR images [2]. In such applications,
the node set V of the undirected graph G = (V,E) usually corresponds to
the set of pixels in a given image, and variable p(u) is the “label” of pixel
u ∈ V that represents disparity, intensity, etc. Functions ϕu encode unary
data penalty functions, and ψuv are pairwise interaction potentials. The
objective function of (P) is often derived in the context of Markov random

6



fields [8]; a minimizer of the function gCV corresponds to a maximum a-
posteriori labeling.

There have been proposed many algorithms for (P) in computer vision
(see, e.g., [2, 13]). Among them, the primal algorithm of Kolmogorov and
Shioura [13] can be seen as an application of algorithm SteepestDescent
to (P), while the algorithm of Bioucas-Dias and Valadão [2] is an applica-
tion of SteepestDescentUp to a special case of (P) where the objective
function does not contain the term

∑
u∈V ϕu(p(u)).

2.3. Iterative Auction in Mathematical Economics

In an auction, we want to find “good” prices for items to be allocated to
bidders. An algorithm for computing such “good” prices, called ascending
auction [1], can be seen as a special implementation of algorithm Steep-
estDescentUp.

We consider an auction market with n types of items or goods, denoted
by N = {1, 2, . . . , n}, and m bidders, denoted by M = {1, 2, . . . ,m}. Each
bidder j ∈ M has his valuation function fj : 2N → R with the value fj(X)
representing the degree of satisfaction for an item set X ⊆ N . We assume
that each fj satisfies the so-called “gross-substitutes” condition, which is
a natural assumption for valuation functions (see [1, 9, 12] for the precise
definition). We also assume that each fj is an integer-valued function. An
allocation of items is defined as a family of item sets X1, X2, . . . , Xm satis-
fying Xj ∩Xk = ∅ if j 6= k and

⋃
j∈M Xj = N .

Given a price vector p ∈ Rn, each bidder j ∈M wants to have an item set
X which maximizes the value fj(X)− p(X), where p(X) =

∑
i∈X p(i). On

the other hand, the auctioneer wants to find a price vector under which all
items are sold completely. Hence, all of the auctioneer and bidders are happy
if we can find a pair of a price vector p∗ and an allocation X∗1 , X

∗
2 , . . . , X

∗
m

satisfying the condition

X∗j ∈ arg max{fj(X)− p(X) | X ⊆ N} (j ∈M).

Such a pair is called a Walrasian equilibrium (see, e.g., [3, 6]).
In the auction literature an algorithm called the iterative auction (or

dynamic auction, Walrasian tâtonnement process, etc.) is often used to
find an equilibrium [3, 6]. An iterative auction finds an equilibrium price
vector by iteratively updating a current price vector p. The most natural
and popular iterative auction is the ascending auction, in which the current
price vector is increased monotonically. The ascending auction is a natural
generalization of the classical English auction for a single item, and known

7



to have various nice properties (see, e.g., [3, 6]); in particular, it is natural
from the economic point of view, and easy to understand and implement.

The ascending auction presented in Ausubel [1] uses a function defined
by

L(p) =
m∑
j=1

max{fj(X)− p(X) | X ⊆ N}+ p(N) (p ∈ Rn),

which is called the Lyapunov function. Under the assumption that each fj
satisfies the gross-substitutes condition, p∗ is an equilibrium price vector if
and only if it is a minimizer of the Lyapunov function, and there exists an
integral minimizer p∗ ∈ Zn of the Lyapunov function. Based on this fact, the
ascending auction in [1] tries to find a minimizer of the Lyapunov function.

It can be shown that the Lyapunov function L is an L\-concave function
if it is regarded as a function in integer vectors, which follows from the
conjugacy results in discrete convex analysis and the assumption that each
fj satisfies the gross-substitutes condition (see, e.g., [14, 18]). Moreover,
it is observed in [18] that the ascending auction in [1] can be seen as an
application of algorithm SteepestDescentUp to the function −L.

Similarly to the ascending auction, an algorithm called the descending
auction is proposed in [1], in which the current price vector is decreased
monotonically. The descending auction is a natural generalization of the
well-known Dutch auction for a single item. It is also observed in [18] that
the descending auction in [1] can be seen as an application of algorithm
SteepestDescentDown to the function −L.

3. Proofs

In this section, we prove Theorems 1.2 and 1.3. The key fact used in
our proofs is the following property of L\-convex functions. For p ∈ Zn, we
denote supp+(p) = {i ∈ N | p(i) > 0}.

Lemma 3.1 ([14, Theorem 7.7]). Let g : Zn → R ∪ {+∞} be an L\-convex
function. For every p, q ∈ dom g with supp+(p− q) 6= ∅, it holds that

g(p) + g(q) ≥ g(p− eY ) + g(q + eY ),

where Y = arg maxi∈N{p(i)− q(i)}.

Proof. We reproduce the proof of this lemma in [14, Theorem 7.7] for its
fundamental importance. Let p, q ∈ dom g, and suppose that supp+(p−q) 6=
∅. By (1), we have

g(q) + g(p) ≥ g((q + λ1) ∧ p) + g(q ∨ (p− λ1)) (3)

8



for every nonnegative λ ∈ Z+. Putting λ = maxi∈N{p(i) − q(i)} − 1, we
have

λ ≥ 0, (q + λ1) ∧ p = p− eY , q ∨ (p− λ1) = q + eY .

Hence, the inequality g(p)+g(q) ≥ g(p−eY )+g(q+eY ) follows from (3).

3.1. Proof of Theorem 1.2

The bound µ(p◦)+1 for the number of iterations in algorithm Steepest-
Descent can be obtained by repeated application of the following lemma.

Lemma 3.2. Let p ∈ Zn be a vector with µ(p) > 0. Suppose that σ ∈
{+1,−1} and X ⊆ N minimize the value g(p+ σeX). Then, µ(p+ σeX) =
µ(p)− 1.

Below we give a proof of Lemma 3.2. We consider the case with σ = +1
since the other case with σ = −1 can be dealt with similarly.

We first show the inequality µ(p+ eX) ≥ µ(p)− 1. For every d ∈ Zn and
Y ⊆ N , we have

‖d− eY ‖+∞ ≥ ‖d‖+∞ − 1, ‖d− eY ‖−∞ ≥ ‖d‖−∞.

Hence, it holds that

µ(p+ eX) = min{‖q − (p+ eX)‖+∞ + ‖q − (p+ eX)‖−∞ | q ∈ arg min g}
≥ min{‖q − p‖+∞ + ‖q − p‖−∞ | q ∈ arg min g} − 1

= µ(p)− 1.

In the following, we prove the reverse inequality

µ(p+ eX) ≤ µ(p)− 1. (4)

The outline of the proof is as follows. We denote

S = {q ∈ arg min g | ‖q − p‖+∞ + ‖q − p‖−∞ = µ(p)},
ξ = max{‖q − p‖+∞ | q ∈ S}.

Let q∗ be a vector in S with ‖q∗−p‖+∞ = ξ, and assume that q∗ is a minimal
vector among all such vectors. We first show that

ξ = ‖q∗ − p‖+∞ > 0. (5)

Note that this condition is equivalent to supp+(q∗ − p) 6= ∅. Using this, we
then prove that

arg max
i∈N
{q∗(i)− p(i)} ⊆ X. (6)

9



By using (5) and (6), we finally derive the inequality (4).
[Proof of (5)] Assume, to the contrary, that ξ = ‖q∗ − p‖+∞ = 0, i.e.,

q∗ ≤ p holds. This assumption implies ‖q∗ − p‖−∞ > 0 since µ(p) > 0.
By L\-convexity of g in (1), we have

g(p+ eX) + g(q∗) ≥ g((p+ eX − 1) ∨ q∗) + g((p+ eX) ∧ (q∗ + 1)). (7)

Let Y = {i ∈ N | q∗(i) − p(i) = 0}, which may be the empty set. Since
q∗ ≤ p, we have

(p+ eX − 1) ∨ q∗ = p− eN\(X∪Y ), (p+ eX) ∧ (q∗ + 1) = q∗ + e(N\Y )∪X ,

which, together with (7), implies

g(p+ eX) + g(q∗) ≥ g(p− eN\(X∪Y )) + g(q∗ + e(N\Y )∪X). (8)

By the choice of σ = +1 and X, we have g(p + eX) ≤ g(p − eN\(X∪Y )).
From this and (8) follows that g(q∗) ≥ g(q∗ + e(N\Y )∪X), implying that
q∗ + e(N\Y )∪X ∈ arg min g. By q∗ ≤ p and the definition of Y , we have

‖(q∗ + e(N\Y )∪X)− p‖−∞ = max
i∈N\Y

{p(i)− (q∗(i) + 1)} = ‖q∗ − p‖−∞ − 1 (9)

since ‖q∗ − p‖−∞ > 0. We also have

‖(q∗ + e(N\Y )∪X)− p‖+∞ ≤ 1 = ‖q∗ − p‖+∞ + 1 (10)

since ‖q∗ − p‖+∞ = 0. From (9) and (10) follows that

µ(p) ≤ ‖(q∗ + e(N\Y )∪X)− p‖+∞ + ‖(q∗ + e(N\Y )∪X)− p‖−∞
≤ ‖q∗ − p‖+∞ + ‖q∗ − p‖−∞ = µ(p), (11)

where the first inequality is by the definition of µ(p). Hence, the inequality
(10) and the first inequality in (11) must hold with equality, i.e., we have
q∗ + e(N\Y )∪X ∈ S and

‖(q∗ + e(N\Y )∪X)− p‖+∞ = ‖q∗ − p‖+∞ + 1 > ‖q∗ − p‖+∞ = ξ.

This, however, is a contradiction to the definition of ξ. Hence, (5) holds.
[Proof of (6)] We denote

A = arg max
i∈N
{q∗(i)− p(i)}.

Then, (6) is simply rewritten as A ⊆ X.

10



Assume, to the contrary, that A\X 6= ∅ holds. We claim that q∗−eA\X ∈
arg min g. By (5), it holds that ξ = ‖q∗ − p‖+∞ > 0. Therefore, we have
A ⊆ supp+(q∗ − p), from which follows that

supp+(q∗ − (p+ eX)) ⊇ A \X 6= ∅.

Since A \X 6= ∅, we also have

arg max
i∈N
{q∗(i)− (p+ eX)(i)} = A \X.

Hence, Lemma 3.1 implies that

g(q∗) + g(p+ eX) ≥ g(q∗ − eA\X) + g(p+ eX + eA\X)

= g(q∗ − eA\X) + g(p+ eX∪A). (12)

By the choice of X, we have g(p+ eX) ≤ g(p+ eX∪A), which, together with
(12), implies that g(q∗) ≥ g(q∗ − eA\X), i.e., q∗ − eA\X ∈ arg min g.

Since A \X ⊆ A ⊆ supp+(q∗ − p), we have

‖(q∗ − eA\X)− p‖+∞ ≤ ‖q∗ − p‖+∞ = ξ, (13)

‖(q∗ − eA\X)− p‖−∞ = ‖q∗ − p‖−∞,

from which follows that

µ(p) ≤ ‖(q∗ − eA\X)− p‖+∞ + ‖(q∗ − eA\X)− p‖−∞
≤ ‖q∗ − p‖+∞ + ‖q∗ − p‖−∞ = µ(p), (14)

where the first inequality is by the definition of µ(p). Hence, the inequality
(13) and the first inequality in (14) must hold with equality. Hence, the
vector q∗− eA\X belongs to S with ‖(q∗− eA\X)− p‖+∞ = ξ, a contradiction
to the minimality of q∗.

[Proof of (4)] To show the inequality (4), we first consider the case
with mini∈N{q∗(i)− p(i)} > 0. Since q∗(i) > p(i) for all i ∈ N , it holds that
q∗ ≥ p+ eX . Therefore, we have

‖q∗ − (p+ eX)‖−∞ = 0 = ‖q∗ − p‖−∞.

By (6), it holds that

‖q∗ − (p+ eX)‖+∞ = ‖q∗ − p‖+∞ − 1.

11



Therefore, it follows that

µ(p+ eX) ≤ ‖q∗ − (p+ eX)‖+∞ + ‖q∗ − (p+ eX)‖−∞
= (‖q∗ − p‖+∞ − 1) + ‖q∗ − p‖−∞ = µ(p)− 1.

We next consider the remaining case where mini∈N{q∗(i) − p(i)} ≤ 0.
We denote

B = arg min
i∈N
{q∗(i)− p(i)}.

We claim that q∗+ eB∩X ∈ arg min g holds. If B∩X = ∅, then q∗+ eB∩X =
q∗ ∈ arg min g. Hence, we assume B ∩X 6= ∅. Since

max
i∈N
{p(i)− q∗(i)} ≥ 0, B = arg max

i∈N
{p(i)− q∗(i)},

it holds that

supp+((p+ eX)− q∗) ⊇ B ∩X 6= ∅, arg max
i∈N
{(p+ eX)(i)− q∗(i)} = B ∩X.

It follows from Lemma 3.1 that

g(p+ eX) + g(q∗) ≥ g(p+ eX − eB∩X) + g(q∗ + eB∩X)

= g(p+ eX\B) + g(q∗ + eB∩X). (15)

By the choice of X, we have g(p+ eX) ≤ g(p+ eX\B), which, together with
(15), implies that g(q∗) ≥ g(q∗ + eB∩X), i.e., q∗ + eB∩X ∈ arg min g.

Since mini∈N{q∗(i)−p(i)} ≤ 0 < maxi∈N{q∗(i)−p(i)} by the assumption
and (5), we have A ∩ B = ∅, which, together with (6), implies A ⊆ X \ B.
Hence, it holds that

‖(q∗ + eB∩X)− (p+ eX)‖+∞ = ‖q∗ − p− eX\B‖+∞ = ‖q∗ − p‖+∞ − 1.

We also have

‖(q∗ + eB∩X)− (p+ eX)‖−∞ = ‖q∗ − p− eX\B‖−∞ = ‖q∗ − p‖−∞,

where the second equality follows from the definition of B. Hence, it holds
that

µ(p+ eX) ≤ ‖(q∗ + eB∩X)− (p+ eX)‖+∞ + ‖(q∗ + eB∩X)− (p+ eX)‖−∞
= (‖q∗ − p‖+∞ − 1) + ‖q∗ − p‖−∞ = µ(p)− 1.

This concludes the proof of Lemma 3.2 (and also of Theorem 1.2).

12



3.2. Proof of Theorem 1.3

The proof of Theorem 1.3 is quite similar to and simpler than that of
Theorem 1.2. Theorem 1.3 can be proved by using the following property
repeatedly.

Lemma 3.3. Let p ∈ Zn be a vector with µ̂(p) > 0, and X ⊆ N be a set
that minimizes the value of g(p+ eX). Then, µ̂(p+ eX) = µ̂(p)− 1.

Below we give a proof of Lemma 3.3. The inequality µ̂(p+eX) ≥ µ̂(p)−1
can be shown as follows. By the triangle inequality, we have ‖q − (p +
eX)‖∞ ≥ ‖q − p‖∞ − 1 for every q ∈ Zn. Taking the minimum over all
q ∈ arg min g with q ≥ p+ eX , we obtain

µ̂(p+ eX) ≥ min{‖q − p‖∞ | q ∈ arg min g, q ≥ p+ eX} − 1

≥ min{‖q − p‖∞ | q ∈ arg min g, q ≥ p} − 1 = µ̂(p)− 1.

In the following, we show the reverse inequality:

µ̂(p+ eX) ≤ µ̂(p)− 1. (16)

Let p∗ be a vector such that p∗ ∈ arg min g, p∗ ≥ p, and ‖p∗−p‖∞ = µ̂(p),
and assume that p∗ is minimal among all such vectors. We denote

A = arg max
i∈N
{p∗(i)− p(i)}.

We have p∗ 6= p and maxi∈N{p∗(i)− p(i)} > 0 since ‖p∗ − p‖∞ = µ̂(p) > 0
and p∗ ≥ p.

We claim that
A ⊆ X. (17)

Assume, to the contrary, that A \X 6= ∅ holds. Since A ⊆ supp+(p∗ − p),
we have

supp+(p∗ − (p+ eX)) ⊇ A \X 6= ∅.

We also have
arg max

i∈N
{p∗(i)− (p+ eX)(i)} = A \X.

Hence, Lemma 3.1 implies that

g(p∗) + g(p+ eX) ≥ g(p∗ − eA\X) + g(p+ eX + eA\X)

= g(p∗ − eA\X) + g(p+ eX∪A). (18)

13



By the choice of X, we have g(p + eX) ≤ g(p + eX∪A). This inequality,
together with (18), implies that g(p∗) ≥ g(p∗ − eA\X), i.e., p∗ − eA\X ∈
arg min g holds. This, however, is a contradiction to the choice of p∗ since

p∗ ≥ p∗ − eA\X ≥ p, ‖(p∗ − eA\X)− p‖∞ ≤ ‖p∗ − p‖∞ = µ̂(p).

Hence, we have (17).
We now prove the inequality (16). Suppose first that the condition p∗ ≥

p+ eX holds. Then, we have

µ̂(p+ eX) ≤ ‖p∗ − (p+ eX)‖∞ = ‖p∗ − p‖∞ − 1 = µ̂(p)− 1,

where the first equality is by (17).
We next consider the case where the condition p∗ ≥ p+ eX fails. Then,

B ∩X 6= ∅ for B = {i ∈ N | p∗(i) = p(i)}. Since maxi∈N{p∗(i)− p(i)} > 0,
we have A ∩ B = ∅, which, together with (17), implies A ⊆ X \ B. Since
p∗ ≥ p, we have

p∗(i) = p(i) (∀i ∈ B), p∗(i) > p(i) (∀i ∈ N \B), (19)

from which p∗+eB∩X ≥ p+eX follows. As shown below, we have p∗+eB∩X ∈
arg min g. Hence, it holds that

µ̂(p+ eX) ≤ ‖(p∗ + eB∩X)− (p+ eX)‖∞ = ‖p∗ − p− eX\B‖∞
= ‖p∗ − p‖∞ − 1 = µ̂(p)− 1,

where the second equality is by A ⊆ X \B, (19), and the definition of A.
We now show that p∗ + eB∩X ∈ arg min g holds. The condition (19)

implies

supp+((p+ eX)− p∗) = arg max
i∈N
{(p+ eX)(i)− p∗(i)} = B ∩X.

Hence, it follows from Lemma 3.1 that

g(p+ eX) + g(p∗) ≥ g(p+ eX − eB∩X) + g(p∗ + eB∩X)

= g(p+ eX\B) + g(p∗ + eB∩X). (20)

By the choice of X, we have g(p+ eX) ≤ g(p+ eX\B), which, together with
(20), implies that g(p∗) ≥ g(p∗ + eB∩X), i.e., p∗ + eB∩X is a minimizer of g.

This concludes the proof of Lemma 3.3 (and also of Theorem 1.3).

14



4. Conclusion

The concept of L\-convexity is generalized to polyhedral convex func-
tions. A steepest descent algorithm similar to SteepestDescent works
for the minimization of a polyhedral L\-convex function, and has a similar
property as SteepestDescent; in particular, the trajectory of a vector p
generated by the algorithm is the “shortest” path between the initial vector
and a minimizer (see [17] for details).

Part of the results in this paper is presented (without proofs) in the
extended abstract [18] in Proceedings of 24th International Symposium on
Algorithms and Computation (ISAAC 2013). This research is supported
by KAKENHI (21360045, 21740060, 24500002) and the Aihara Project, the
FIRST program from JSPS.

References

[1] L. M. Ausubel, An efficient dynamic auction for heterogeneous com-
modities, Amer. Econ. Rev. 96 (2006) 602–629.

[2] J. M. Bioucas-Dias, G. Valadão, Phase unwrapping via graph cuts,
IEEE Trans. Image Process. 16 (2007) 698–709.

[3] L. Blumrosen, N. Nisan, Combinatorial auction. in: N. Nisan, et al.
(eds.) Algorithmic Game Theory, Cambridge Univ. Press, Cambridge,
2007, pp. 267–299.

[4] Y. B. Boykov, O. Veksler, R. Zabih, Fast approximate energy mini-
mization via graph cuts, IEEE Trans. Pattern Anal. Mach. Intell. 23
(2001) 1222–1239.

[5] N.-k. Chung, D.-w. Tcha, A dual algorithm for submodular flow prob-
lems, Oper. Res. Lett. 10 (1991) 489–495.

[6] P. Cramton, Y. Shoham, R. Steinberg, Combinatorial Auctions. MIT
Press, Cambridge, MA, 2006.

[7] J. Darbon, M. Sigelle, Image restoration with discrete constrained total
variation, part I: fast and exact optimization, J. Math. Imaging Vision
26 (2006) 261–276.

[8] S. Geman, D. Geman, Stochastic relaxation, Gibbs distributions, and
the Bayesian restoration of images, IEEE Trans. Pattern Anal. Mach.
Intell. 6 (1984) 721–741.

15



[9] F. Gul, E. Stacchetti, The English auction with differentiated commodi-
ties, J. Economic Theory 92 (2000) 66–95.

[10] R. Hassin, The minimum cost flow problem: a unifying approach to
dual algorithms and a new tree-search algorithm, Math. Program. 25
(1983) 228–239.

[11] W.T. Huh, G. Janakiraman, On the optimal policy structure in serial
inventory systems with lost sales, Oper. Res. 58 (2010) 486–491.

[12] A. S. Kelso, V. P. Crawford, Job matching, coalition formation and
gross substitutes, Econometrica 50 (1982) 1483–1504.

[13] V. Kolmogorov, A. Shioura, New algorithms for convex cost tension
problem with application to computer vision, Discrete Optim. 6 (2009)
378–393.

[14] K. Murota, Discrete Convex Analysis, SIAM, Philadelphia, PA, 2003.

[15] K. Murota, On steepest descent algorithms for discrete convex func-
tions, SIAM J. Optim. 14 (2003) 699–707.

[16] K. Murota, A. Shioura, Dijkstra’s algorithm and L-concave function
maximization, Math. Program. (2013) published online.

[17] K. Murota, A. Shioura, On some properties of polyhedral L-concave
maximization algorithm, Technical report METR 2013-18, Department
of Mathematical Informatics, University of Tokyo (2013).

[18] K. Murota, A. Shioura, Z. Yang, Computing a Walrasian equilibrium
in iterative auctions with multiple differentiated items, in: Proc. 24th
International Symposium on Algorithms and Computation (ISAAC
2013), to appear.

[19] P. Zipkin, On the structure of lost-sales inventory models, Oper. Res. 56
(2008) 937–944.

[20] A. Zomet, A. Levin, S. Peleg, Y. Weiss, Seamless image stitching by
minimizing false edges, IEEE Trans. Image Process. 15 (2006) 969–977.

16


