Efficiently Pricing European-Asian Options
— Ultimate Implementation and Analysis
of the AMO Algorithm —

Akiyoshi Shioura! and Takeshi Tokuyamal

Graduate School of Information Sciences, Tohoku University, Sendai 980-8579, Japan
{shioura, tokuyama}@dais.is.tohoku.ac.jp

Abstract. We propose an efficient and accurate randomized approxi-
mation algorithm for pricing a European-Asian option on the binomial
tree model. For an option with the strike price X on an n-step binomial
tree and any positive integer k, our algorithm runs in O(kn?) time with
the error bound O(X/k) which is independent of n. Our algorithm is a
modification of the approximation algorithm developed by Aingworth,
Motwani, and Oldham (2000) into a randomized algorithm, which im-
proves the accuracy theoretically as well as practically.

1 Introduction

1.1 Background

Options are popular financial instruments in world financial markets. One of the
simplest options is Furopean call option, which is a contract giving its holder
the right, but not the obligation, to buy a stock or other financial asset at some
point in the future (called the expiration date) for a specified price X (called the
strike price). The payoff of an option is the amount of money its holder makes
on the contract. Suppose that we have a European option on a stock, and the
stock price S is more than the strike price X on the expiration date. Then, we
can make some money by ezercising the option to buy the stock and selling the
stock immediately at the market price. Hence, the payoff of a European option
is given by (S — X)* = max{S — X,0}. The price of the option is usually much
less than the actual price of the underlying stock. Therefore, options hedge risk
more cheaply than stocks only, and provide a chance to get large profit with a
small amount of money if one’s speculation is good.

The price of an option is given by the discounted expected value of the pay-
off. Because of the popularity of options, techniques for computing the option
price have extensively been discussed in the literature [1,2,5-11,13]. A standard
method of pricing an option is to model the movement of the underlying finan-
cial asset as geometric Brownian motion with drift and then to construct an
arbitrage portfolio [4,11]. This yields a stochastic differential equation, and its
solution gives the option price. However, it is often difficult to solve this differ-
ential equation for many complex options such as European-Asian option dealt

with in this paper, and indeed no simple closed-form solution is known. There-
fore, it is widely practiced to simulate geometric Brownian motion by using a
discrete model, and use this model to approximate the option price. One such
discrete model is the binomial tree model [8, 11], where the time period is decom-
posed into n time steps, and geometric Brownian motion is modeled by using a
biased random walk on a graph called a binomial tree of depth n. The option
price obtained from the binomial tree model converges to the price given by the
differential equation if n goes to infinity. In the binomial tree model, the process
of the movement of a stock price is represented by a path. An option is said to
be path-dependent [6,11] if the option’s payoff depends on the path representing
the process as well as the current stock price. Although path-dependency is often
useful in designing a secure option against risk caused by sudden change of the
market, it makes the analysis of option prices quite difficult.

1.2 Our Problem and Result

In this paper, we consider the pricing of Furopean-Asian option. European-Asian
option is a kind of path-dependent options and its payoff is given as (A — X)¥,
where A is the average stock price during the time from the purchase date to
the expiration date of the option and X is the strike price. It is known to be
#P-hard in general to compute the exact price of path-dependent options on
the binomial tree model [6]. Therefore, it is desired to design an efficient approx-
imation algorithm with provable high accuracy, and various pricing techniques
have been developed so far [1,2,6,7,9,13].

A naive method for computing the exact price of European-Asian options,
called the full-path method, enumerates all paths in the binomial tree. Unfor-
tunately, the full-path method requires exponential time since there are expo-
nential number of paths in the binomial tree. Hence, the Monte Carlo method
that samples paths in the binomial tree is popularly used to compute an ap-
proximate value of the exact price. The error bound of the Monte Carlo method,
however, depends on the volatility of the stock price when a polynomial number
of samples are taken by naive sampling [10].

Aingworth-Motwani—-Oldham (AMO) [1] proposed the first polynomial-time
approximation algorithm with guaranteed worst-case error bound, which enables
us to avoid the influence of volatility to the theoretical error bound. The idea is to
prune exponential number of high-payoff paths by using mathematical formulae
during the run of an aggregation algorithm based on dynamic programming
and bucketing. In each of n aggregation steps the algorithm produces the error
bounded by X/k, where k denotes the number of buckets used at each node of
the binomial tree. Hence, the error bound of the AMO algorithm is nX/k, and
the algorithm runs in O(kn?) time. While algorithms on the “uniform” model
has been mainly considered in the literature [1, 2, 6, 7, 9], the AMO algorithm and
its analysis work on the “non-uniform” model where the transition probabilities
of the stock price may differ at each node [13].

Then, variants of the AMO algorithm were proposed to achieve a better error
bound than nX/k. Akcoglu Kao Raghavan [2] presented a recursive version of

the AMO algorithm and reduce the error bound to O(n# X/k) by spending
almost the same time complexity when the volatility of the stock is small.

The error bound is further improved by Dai-Huang-Lyuu (DHL) [9] and
by Ohta—-Sadakane-Shioura—Tokuyama (OSST) [13]. While the AMO algorithm
uses the same number of buckets at each node of the binomial tree, the DHL
algorithm [9] uses different number of buckets at each node. By adjusting the
number of buckets at each node appropriately while keeping the time complex-
ity O(kn?), they achieved the error bound O(y/nX/k), where k is the average
number of buckets used at each node. Their analysis, however, applies only to
the uniform model and does not extend to the non-uniform model. On the other
hand, the OSST algorithm [13] uses the idea of randomized rounding in the ag-
gregation steps of the algorithm, and achieves the error bound O(y/nX/k) for
the non-uniform model. Moreover, it is shown in [13] that for the uniform model
the error bound of the OSST algorithm can be reduced to O(n'/* X/k).

In this paper, we further reduce the error bound by giving a randomized
approximation algorithm with an O(kn?) time complexity and an O(X/k) error
bound. The error bound of our algorithm is independent of the depth n of the
binomial tree, although those of the AMO algorithm and its previous variants
[2,9,13] are dependent on n. Our algorithm uses the ideas in Dai et al. [9] and
Ohta et al. [13]. As in [13], we regard the aggregation steps of the algorithm as a
Martingale process with O(n?) random steps by using novel random variables. It
can be shown that the expected value of the output by our algorithm equals the
exact price, and that the error in each single step is bounded by a function of the
number of buckets at a node of the binomial tree. Thus, we can apply Azuma’s
inequality [3] to the Martingale process to obtain the error bound. If we choose
k as the number of buckets at each node, the algorithm coincides with the one
in [13]. To reduce the error bound as much as possible, we adjust the number of
buckets at each node and obtain the error bound O(X/k), where k is the average
number of buckets used at each node. Since the value X/k can be seen as the
“average” of the absolute error produced at each node of the binomial tree, the
error bound of our algorithm is the best possible within the framework of the
AMO algorithm. We also show the practical quality of the approximate value
computed by our algorithm by some numerical experiments.

Although we only consider the pricing of call options on the binomial tree
model in this paper, our algorithm can be easily modified to put options and to
the trinomial tree model as in [1,2,9,13].

2 Preliminaries

2.1 The Binomial Tree Model

A binomial tree of depth n is a leveled directed acyclic graph defined as follows
(see Fig. 1). A binomial tree of depth n has n+ 1 levels. There are i + 1 nodes in
the i-th level (0 < i < n) and each node is labeled as (¢,), where j (0 < j < 1)
denotes the numbering of the nodes. The node (0,0) in the 0-th level is called

Fig. 2. The uniform binomial tree model.
The probability w(7,j) (resp., the stock
price S;(j)) at each node is shown above
the node (resp., below the node).

Fig. 1. A binomial tree of depth 3

the root, and each node (n,j) in the n-th level is called a leaf. Each non-leaf
node (4, 7) has two children (i 4+ 1,7) and (i + 1,5 4+ 1). Therefore, each non-root
node (4, 7) has two parents (i — 1,7 —1) and (i —1,5) if 1 < j <i—1, and each
of (,0) and (7,¢) has only one parent.

Let us consider a discrete random process simulating the movement of a stock
price. We divide the time from the purchase date to the expiration date of an
option into n time periods, and the i-th time step means the end of the i-th
time period. In particular, 0-th (resp., n-th) time step is the purchase (resp., ex-
piration) date of the option. For i = 0,1,...,n, let S; be a random variable
representing the stock price at the i-th time step, where Sy is the initial stock
price known in advance. The fundamental assumption in the binomial tree model
is that in each time step the stock price S either rises to uS or falls to dS, where
u and d are predetermined constants satisfying « > d and u = 1/d. Thus, we
can model the stock price movement by using a binomial tree (see Fig. 2).

Suppose that we are at a non-leaf node (7,) in the binomial tree model and
the current stock price is S. With probability p;;, we move to the node (i + 1, 5)
and the stock price rises to wS; with probability 1 — p;;, we move to the node
(i41,741) and the stock price falls to dS. Thus, the stock price at the node (4, 5)
is S;(j) = u"~7d? Sy. The binomial tree model is said to be uniform if pij = p for
each node (i, j); otherwise it is non-uniform. The uniform model has been widely
considered [1,2,6,7,9] since p is uniquely determined under the non-arbitrage
condition of the underlying stock. The non-uniform model, however, is often
useful to deal with various stochastic models. For each node (i,5), we denote
by w(i, j) the probability that the random walk reaches to (i,). In the uniform
model, we have w(i,j) = (;)pi*j(l —p).

2.2 Options

Let X be the strike price of an option. The payoff of an option is the amount of
money its holder makes on the contract. We adopt a convention to write F'* for
the value max{F,0}. European option is one of basic options, and its payoff is
given by (S, — X)T which is determined by the stock price S,, on the expiration
date. It is quite easy to compute the expected value of the payoff of Furopean
options under the binomial tree model. A drawback of European options is that
the payoff may be affected drastically by the movement of the stock price just
before the expiration date; even if the stock price goes very high during most of
time periods, it may happen that the option does not make money at the end.
European-Asian option is more reliable for the holder than European option, and
its payoff is given by (A4, — X)*, where 4,, = (3°1" ;Si)/(n+1) is the average of
the stock prices during n time periods. Let T; = 25:0 S; be the running total of
the stock price up to the j-th time step. Once Tj exceeds the threshold (n+1)X,
the option holder will surely exercise it on the expiration date and obtain the
payoff of at least 7;/(n+1) — X.

Our aim is to compute the price of European-Asian options. Since the price
of an option is given by the discounted expected value of the payoff, it suffices to
compute the expected payoff. A simple method is to compute the running total
T,,(P) of the stock price for each path P in the binomial tree together with the
probability Pr(P) that the path occurs, and exactly compute the value

E((A,— X)) =Y {Pr(P)- (T;J(j) —X)* | P: apath from the root to a leaf}.

We call the expected value of the payoff computed as above the exact value of the
expected payoff, and denote U = E((A,, — X)™). This simple method, however,
needs exponential time since there are 2™ paths in a binomial tree.

3 A New Algorithm for Pricing European-Asian Options

3.1 A Basic Algorithm

We describe a basic approximation algorithm for the option’s expected payoff.
This algorithm is a slight generalization of the AMO algorithm, and the previous
approximation algorithms in [1,9,13] can be seen as specialized versions of this
basic algorithm.

As in [1], the basic algorithm uses dynamic programming to compute an
approximate value of the option’s expected payoff. For a path P from the root
to a node (4,7) in the i-th level, we define the state of P as a pair (S;(j),7T})
of the stock price S;(j) = u"7d’Sy and the running total T;. Note that the
states of two different paths reaching a node (7,) can be the same. We define
the weight of the state (S;(7),T;) as the probability that a path P with the state
(Si(4), T;) occurs. The basic algorithm is based on a simple observation that if
the running total of a current state is above the threshold (n + 1)X, then the
conditional expectation of the payoff at this state can be analytically computed
as shown in Lemma 1 below, and such a state can be pruned away.

Lemma 1 ([1,13]). Suppose that we are at a node (i,j) in the i-th level and
the current state is (S,T), where T > (n+ 1)X. Then, the payoff’s conditional
expectation is given as {T + h(i,5)}/(n+1) — X, where h(i,j) is defined by the
following recursive formula: if i =n then h(i,j) =0, and if i < n then

h(i,j) = pij{h(i + 1,7) + Sit1(G)} + (1 = pig){h(i + 1,5 + 1) + Sit1(j + 1)}

Hence, we need to consider only the states with running total less than
(n+ 1)X, which may be exponential many. Rather than dealing with each un-
pruned state individually, we instead aggregate the states by using buckets that
divide the interval [0, (n + 1)X). At each node (i,5) in the i-th level, the al-
gorithm creates k;; buckets B;(j,h) (h = 0,1,...,k;; — 1), each of which cor-
responds to the interval [bp, bp11) = [%h, %(h + 1)). Each unpruned
state of a path terminating at the node (i,) is stored in one of k;; buckets
according to its running total. The algorithm chooses a value R;(j, h) in the in-
terval [by, by41) appropriately, and approximates all states in the bucket B;(j, h)
by a single state (S;(j), Ri(j,h)), where its weight w;(j, h) is given by the sum
of the weights of all states in B;(j, h). Then, the algorithm produces two new
states (Si1(7), Ri(j, k) + Sit1(j)) and (Sit1(j + 1), Ri(j, h) + Siva(j + 1)) in
the (i + 1)-st level, and inserts these states in appropriate buckets at the nodes
(t4+1,7) and (i 41,7+ 1), respectively, or computes the conditional expectation
of the payoff at these states by using Lemma 1.

The error bound and the time and space complexity of the basic algorithm
can be analyzed as follows.

Theorem 2. The basic algorithm computes a value ¥ satisfying o —U| <
Xy, Z;:Ow(i,j)/kij. The time and space complexity of the basic algorithm

are O(>1, Z;:o Kij).

Proof. The error obtained by rounding a running total at a node (4, 7) is bounded
by (n+ 1)X/k;;. Therefore, the contribution in processing one node to the error
of the average stock value A, is at most Xw(i,j)/ki;, and the error in the
estimation of A, is bounded by X 371 375 w(i, j)/kij.

Let b;(4, h) be the number of states inserted in the bucket B;(j, k). Then, the
time and space complexity are written as O(>_1" Z;:o kij+> 04 Z;:o bi(j, h)).
Since we obtain from each bucket in the i-th level at most two new states in the
(i+1)-st level, it holds that 3207 biy1(j,h) <235 g kij fori =0,...,n~1. O

3.2 Previous Algorithms

We can obtain the algorithms [1,9, 13] by customizing the number of buckets k;;
and the value R;(j, h).

The AMO algorithm [1] can be obtained by setting k;; = k with a positive
integer k for all nodes (7, 7) and R;(j,h) = W}L. Note that the AMO algo-
rithm computes a lower bound of the exact value U of the expected payoff; we

can also compute an upper bound by setting R;(j, h) = W(h + 1) instead.

We denote by AMO-LB (resp., AMO-UB) the AMO algorithm for a lower (resp.,
upper) bound of U.

Dai et al. [9] proposed four approximation algorithms nUnifDown, nUnifCvg,
nUnifUp, and nUnifSpl, where the first two (resp., the last two) computes lower
(resp., upper) bounds of U. All algorithms use k;; values defined as follows:

k 1 2 iy J
kij = (n+1D)(n+2) X w(i,) for all nodes (i, j),

2 Z?:o Z;‘/:O V w(?,j")

where k is a positive integer corresponding to the average number of buckets

at each node. In nUnifDown (resp., nUnifUp) we set R;(j,h) = %h (resp.,
Ri(j,h) = X (B 4 1)), The algorithms nUnifCvg and nUnifSpl are modified

ke
versions of nUnJifDown and nUnifUp by using heuristics; see [9] for details. While
the error bounds of nUnifCvg and nUnifSpl are the same as those of nUnifDown
and nUnifUp theoretically, they are much better practically.

The OSST algorithm [13] is a randomized algorithm. We set k;; = k with a
positive integer k for all nodes (i, j), as in the AMO algorithm. To set the value
R;(j,h), we choose a “representative” state (S;(j),T) in the bucket B;(j,h)
randomly, where a state with weight w is chosen with probability w/w;(j, h),
and set R;(j,h) =T.

3.3 Our Algorithm and Analysis

Our algorithm is based on the ideas used in Dai et al. [9] and Ohta et al. [13],
and can be obtained from the basic algorithm. We set R;(j,) in the same way
as in the OSST algorithm, i.e., we choose a representative state (5;(j),T) in the
bucket B;(j, h) randomly, where a state with weight w is chosen with probability
w/w;(j, h), and set R;(j,h) = T. We explain later how to choose k;;.

Let ¥ be the payoff value computed by our algorithm. Since our algorithm is
randomized, ¥ is a random variable depending on the random choice of repre-
sentative states in the buckets. Let Y; ; be a random variable giving the future
value of the payoff just after the algorithm processes the node (7,) in the i-th
level, i.e., after the choice of representatives in all buckets has been determined
up to the j-th node in the ¢-th level. By definition, Yy = U and Y,,,, = V.
Thus, we have a random process with Y " (i + 1) = (n + 1)(n + 2)/2 steps.
The following lemma shows that random variables Yy 0,Y1,0,. ... Ys,n constitute
a Martingale sequence.

Lemma 3. E(Yriyj ‘ Y0,07Y1,0;Y1,17---7}/i,j71) = Yriyjfl fOT‘i = 0,1,...,71, j =
0,1,...,i.

Proof. Consider the set {a1,as,...,a4} of states in a bucket at the node (4, j)
of the i-th level before selecting a representative. For I = 1,2,...,q, let Y(q;)
be the expected payoff (exactly computed from the model) for a path with the
state a;, and w(a;) be the weight of a;. If the state q; is selected, it contributes
Y (a;)W to the payoff, where W = >~ ; w(a;). Thus, the expected contribution

of the states after the selection is Y i, (w(a)/W)Y (a)W = 31, w(a)Y (ar),
where the right-hand side is the expected contribution before the selection. 0O

Lemma 3 also shows that the expected value of the payoff ¥ equals the exact
value U of the expected payoft, i.e., E(Y,) = E(¥) =U.

When the algorithm processes a node (i, j), running totals of paths termi-
nating at (i, j) are approximated with the error less than (n +1)X/k;;, and the
running totals of other paths remain the same. Hence, we have

Vi1 — Yoy < X0 (0 < j < <m),
(1)

[Yit1,0 — Vil < W (0 <i<n).

Thus, Azuma’s inequality [3] applies (see also [12, Theorem 4.16]).

Theorem 4 (Azuma’s inequality). Let Zy, Z1,... be a Martingale sequence
such that |Zy, — Zy—1| < ¢ for each k, where ¢y is a constant. Then,

)2
Pr[|Z: — Zo| > A\ < 2exp <7> (Vt=1,2,..., YA >0).
222:1 %

Theorem 4 and (1) yield the inequality

2

i\ e (w(i))
Pr[Yn,n—U|>)\]<2€XP(m>7 Wherep:ZZ(ki) '

i=1 j=0

Hence, for any positive real number ¢, our algorithm computes in (Y., Z;:O ki ;)

time a value ¥ satisfying |¥ — U| < ¢X+/I" with probability at least 1 — 2e="/2,
To minimize the error bound ¢X+/T" while keeping the time complexity O(kn?),
we define the number of buckets at node (i, j) by

o k(n+1)(n+2) w(i,j) _ k(n+2)wi .
kz] ’7 2 X ZZZO Z;II_Ow(il7jl)—‘ ’V 2 (7])-‘ .
Since I' < 2/k? and Y7, Zj‘:o kij < (k+1)(n+ 1)(n+ 2)/2, we have the

following theorem, showing that the probabilistic error bound is O(X/k).

Theorem 5. Let k be any positive integer and c be any positive real number.
Then, our algorithm computes in O(kn?) time a value ¥ satisfying ¥ — U] <

V2cX [k with probability at least 1 — 2e~<"/2.

3.4 Derandomization

Although the error bound O(X/k) of our algorithm shown in the last section is
better than the previous approximation algorithms, our algorithm is randomized
and therefore the error bound only holds with “high” probability. Hence, it is

ST-derand -% 1.0014,

1.05+ Q ST-rand -o nunifSpl - -«

it K 1.0012 nunifCvg -+

104 3 o nUnlf_Cvg - ST-derand -
H nUnifSpl -+ 1.001

1.0008
1.0006
1.0004
1.0002

DK s 2Ky ot S gy o

099985 15 26 25 30 35

095 15 20 75 30 35
(b) Comparison of nUnifCvg, nUnifSpl,

C i f Igorith ith
(a) Comparison of our algorithms wi and ST-derand

nUnifCvg, nUnifSpl, OSST, and MC

Fig. 3. Relative errors of approximate option prices computed by several algorithms

desired to derandomize our algorithm without losing its accuracy. One idea for
derandomization is to take the weighted mean of running totals of the states in
each bucket B;(j, h) as the value R;(j, h), as in the algorithm nUnifCvg by Dai
et al. [9]. Although we have not yet proved the theoretical error bound O(X/k)
for this derandomized version, it is experimentally shown that its error bound is
better than the original one (see Sect. 3.5).

3.5 Experimental Results

We show some experimental results to illustrate the performance of our random-
ized approximation algorithm and its derandomized version. In particular, we
compare the quality of the option price computed by our algorithms with those
by other approximation algorithms. We implemented the full-path method to
compute the exact price, and approximation algorithms such as the naive Monte
Carlo method (MC), the AMO algorithms (AMO-LB, AMO-UB), the DHL al-
gorithms [9] (nUnifDown, nUnifCvg, nUnifUp, nUnifSpl), and the OSST algo-
rithm [13] (OSST). We denote our randomized and derandomized algorithms
by ST-rand and ST-derand, respectively. The experiment is done by a Pentium
IV 2.60CGHz PC and all programs are implemented in C++.

In the experiment, we consider a uniform model with Sy = X = 100, u = 1.1,
d = 1/u, pu+(1—p)d = (1.06)*/™. The parameter k is set to 100 in the approxi-
mation algorithms except for MC. Recall that the positive integer k denotes the
number of buckets used at each node for AMO-LB/UB and OSST while & is the
average number of buckets used at each node for the DHL algorithms and ours.
The Monte Carlo method MC takes 400n sample paths so that it runs in almost
the same time as other approximation algorithms. In the experiment, only one
trial is made for each algorithm.

Fig. 3 gives the result of the experiment in the range n € [10, 35], showing
the ratio of the approximate prices computed by approximation algorithms to
the exact price. The running time of the approximation algorithms are almost
the same and less than 0.05 seconds, and the full-path method takes more than

9 hours when n = 35. The results of AMO-LB/UB and nUnifDown/Up are not
shown in the graphs since the relative errors of these are always more than 0.2
and much worse than the relative errors of the other algorithms.

The graph (a) shows that the relative errors of nUnifCvg, nUnifSpl, and ST-
derand are better than those of the other algorithms. In particular, our deran-
domized algorithm ST-derand performs much better than ST-rand. In the graph
(b) we compare the three algorithms nUnifCvg, nUnifSpl, and ST-derand. We see
that the relative error of ST-derand is quite accurate and as good as nUnifCvg.
This result shows that the error bound of our derandomized algorithm ST-derand
is much better than the error bound O(X/k) of the randomized algorithm ST-
rand. It is an interesting open question whether ST-derand also has the theoretical
error bound O(X/k), which is left for further research.

References

1. D. Aingworth, R. Motwani, and J. D. Oldham, Accurate approximations for Asian
options, Proc. 11th ACM-SIAM Symposium on Discrete Algorithms (2000), 891
900.

2. K. Akcoglu, M.-Y. Kao, and S. V. Raghavan, Fast pricing of European Asian
options with provable accuracy: single-stock and basket options, Proc. Annual Eu-
ropean Symposium on Algorithms 2001, Lecture Notes in Computer Science 2161
(2001), 404-415.

3. K. Azuma, Weighted sum of certain dependent random variables, Tohoku Mathe-
matical Journal 19 (1967) 357-367.

4. F. Black and M. Scholes, The pricing of options and corporate liabilities, Journal
of Political Economy 81 (1973), 637-654.

5. P. Chalasani, S. Jha, F. Egriboyun, and A. Varikooty, A refined binomial lattice for
pricing American Asian options, Review of Derivatives Research 3 (1999), 85-105.

6. P. Chalasani, S. Jha, and 1. Saias, Approximate option pricing, Algorithmica 25
(1999), 2-21.

7. P. Chalasani, S. Jha, and A. Varikooty, Accurate approximation for European
Asian options, Journal of Computational Finance 1 (1998), 11 29.

8. J. C. Cox, S. A. Ross, and M. Rubenstein, Option pricing: a simplified approach,
Journal of Financial Economics T (1979), 229-263.

9. T.-S. Dai, G.-S. Huang, and Y.-D. Lyuu, Extremely accurate and efficient tree al-
gorithms for Asian options with range bounds, 2002 NTU International Conference
on Finance, National Taiwan University, Taiwan, May 2002.

10. P. Glasserman, Monte Carlo Method in Financial Engineering, Springer, Berlin,
2004.

11. J. C. Hull, Options, Futures, and Other Derivatives, Fifth Edition, Prentice Hall,
Upper Saddle River, NJ, 2002.

12. R. Motwani and P. Raghavan, Randomized Algorithms, Cambridge Univ. Press,
London, 1995.

13. K. Ohta, K. Sadakane, A. Shioura, and T. Tokuyama, A fast, accurate and simple
method for pricing European-Asian and Saving-Asian options, Algorithmica, to
appear.

