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Linear Time Algorithm for Approximating
a Curve by a Single-Peaked Curve

Jinhee Chun,1 Kunihiko Sadakane,2 and Takeshi Tokuyama1

Abstract. Given a function y = f (x) in one variable, we consider the problem of computing the single-
peaked (unimodal) curve y = ϕ(x) minimizing the L2-distance between them. If the input function f is a
histogram with O(n) steps or a piecewise linear function with O(n) linear pieces, we design algorithms for
computing ϕ in linear time. We also give an algorithm to approximate f with a function consisting of the
minimum number of unimodal pieces under the condition that each unimodal piece is within a fixed L2-distance
from the corresponding portion of f .
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1. Introduction. Given a function y = f (x) defined on an interval [0, 1], we consider
the problem of approximating f by a unimodal function y = ϕ(x).

Here, a function is unimodal if it has a unique maximal peak (the peak may be a flat
interval). Equivalently, for any real number t , {x ∈ [0, 1] : ϕ(x) ≥ t} is either an interval
or empty.

We assume that functions considered in this paper are bounded and Riemann inte-
grable (e.g., a piecewise algebraic function). For two functions g(x) and h(x) defined
on [0, 1], we define their inner product as g · h = ∫ 1

0 g(x)h(x) dx . The L2-norm of
a function g is ‖g‖ = √g · g, and the L2-distance between two functions g and h is
‖g − h‖.

We consider the squared L2-distance

‖ f − ϕ‖2 =
∫ 1

0
( f (x)− ϕ(x))2 dx

between f andϕ. If the squared L2-distance is minimized, we callϕ the optimal unimodal
approximation of f . See Figure 1 to get intuition. Without loss of generality, we assume f
and ϕ are nonnegative functions, since we can vertically translate them without changing
the distance between them.

The problem is a basic problem in statistics, and initially motivated from a problem
in computer vision [2]. Moreover, it has an application to a data mining [8], [9] problem.

We give an O(n) time algorithm for computing the optimal unimodal approximation
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Fig. 1. An input polygonal function (dotted curve) and its optimal unimodal approximation.

if f is a piecewise linear function with n linear pieces. It is easy to see that our method
also works for a piecewise algebraic function. The algorithm is designed by using three
different forms of the objective function, and also convex hull algorithms. We remark
that a different O(n) time algorithm has been proposed by Stout [12] for the special case
where the input is a histogram.3

A function y = g(x) is called a piecewise unimodal approximation of y = f (x)
if g consists of k unimodal portions and the L2-distance between each portion and the
corresponding part of f is at most a given threshold ε. We can compute a piecewise
unimodal approximation with the minimum number of maximal peaks in O(n log n)
time by using the above-mentioned linear time algorithm.

The rest of the paper is organized as follows: We first give a geometric characterization
of the (integral curve of) the optimal unimodal approximation in Section 2, which leads
to the basic design of our algorithms. We next give an algorithm for a special case where
the input is a histogram (see Figure 2) in Section 3, and then extend the idea for polygonal
functions in Section 4. We give the algorithm for the piecewise unimodal approximation
in Section 5, and finally we mention an application to data mining in Section 6.
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Fig. 2. A histogram and its unimodal approximation (p is the position of the peak).

3 This was informed by a reviewer of this paper.
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2. Geometric Characterization. We use the following notations: The integral func-
tions of functions f and ϕ are denoted by F(x) = ∫ x

0 f (z) dz and �(x) = ∫ x
0 ϕ(z) dz,

respectively. Although we do not assume continuity for f and ϕ, F and� are continuous
functions.

The convex hull of a geometric object is the minimum convex region containing the
object. The lower (resp. upper) hull of a planar geometric object is the lower (resp. upper)
curve of the boundary curve of the convex hull (see [10] for a comprehensive description
of these notions). By definition, a lower hull is a convex curve and an upper hull is a
concave curve.

The following lemma is straightforward from the unimodality of ϕ:

LEMMA 2.1. Suppose that ϕ takes its maximum value at x = p. Then y = �(x) is
convex (resp. concave) in the range x ∈ [0, p] (resp. x ∈ [p, 1]).

DEFINITION 1. For the curve y = F(x) and a real value 0 ≤ p ≤ 1, L(p) is the lower
hull of the curve defined by y = F(x) restricted to the range x ∈ [0, p]. Similarly, U(p)
is the upper hull of the curve defined by y = F(x) restricted to the range x ∈ [p, 1].

Figure 3 illustratesL(p) andU(p) of the integral curve y = F(x) of the input function
of Figure 2.

Our algorithm for computing the optimal unimodal approximation is based on the
following geometric theorem:

THEOREM 2.2. Suppose that the optimal unimodal approximation ϕ of f attains its
maximum value at x = p. Then the curve defined by y = �(x) coincides with L(p) and
U(p) in the ranges [0, p] and [p, 1] of x , respectively.

We devote the rest of this section to proving Theorem 2.2. A function f is a piece-
wise constant function (often called a histogram) if [0, 1] is divided into n subintervals

peak

0 1p

Fig. 3. The curve y = F(x) (given by dotted lines) and L(p) and U(p) (solid curves).
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Fig. 4. The pyramid map π .

I1, I2, . . . , In , and f takes a constant value on each subinterval. We call these subinter-
vals the prime intervals. We write Ik = (
k, rk] by using its left and right endpoints,
and assume that 
1 = 0, 
k = rk−1 (k = 2, 3, . . . , n), and rn = 1. Precisely speaking,
I1 = [0, r1] (instead of (0, r1]). Without loss of generality, we assume that the value of
f on Ii is different from that of Ii+1 for each i = 1, 2, . . . , n − 1.

The squared L2-distance ‖ f − ϕ‖2 is an integral of ( f (x)− ϕ(x))2, and the integral
is defined as a limit of integrals of histograms. Thus, as shown later, it is essential to
prove Theorem 2.2 for histograms. Therefore, we concentrate on the case where f is a
histogram. The following lemma is obvious:

LEMMA 2.3. An optimal unimodal approximation ϕ of a histogram f is a constant
function in the interior of each prime interval.

It suffices to consider ϕ that is a constant function on each prime interval, since the
difference at the endpoints of prime intervals is irrelevant to our measurement.

Let I be the set of subintervals of [0, 1]. We call π : t ∈ [0,∞)→ I a pyramid map
(or pyramid) if π(t) ⊆ π(t ′) for t ≥ t ′ (see Figure 4). We often call π(t) the horizontal
section of π at the height t .

We consider a unimodal function y = ϕ(x) defined on [0, 1], and define πϕ(t) =
{x ∈ [0, 1]: ϕ(x) ≥ t} for a nonnegative real number t . Naturally, πϕ is a pyramid
map. If ϕ is the optimal unimodal approximation that is constant on each prime interval,
each image of πϕ is either empty or a union of intervals Ii (i = 1, 2, . . . , n), and
ϕ(x) = inf{t : x ∈ πϕ(t)}.

Each maximal interval on which ϕ is a constant function is called a step of ϕ. The
value of ϕ in each step is called the height of the step. From Lemma 2.3, each step is a
union of prime intervals.

For the input function f and a unimodal function ϕ, we consider

H( f, ϕ) = ‖ f ‖2 − ‖ f − ϕ‖2.

Since ‖ f ‖ is given, ϕ is an optimal unimodal approximation of f if and only if it
maximizes H( f, ϕ).
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LEMMA 2.4.

H( f, ϕ) = 2
∫ ∞

0
( f (πϕ(t))− t |πϕ(t)|) dt,

where f (πϕ(t)) =
∫

x∈πϕ(t) f (x) dx and |πϕ(t)| is the length of the interval πϕ(t).

PROOF. Let S be the set of all steps of ϕ, and let tJ be the height of a step J ∈ S. It
is observed that the horizontal section πϕ(t) is the union of steps J satisfying tJ ≥ t .
Thus, for x ∈ J , x ∈ πϕ(t) if and only if 0 ≤ t ≤ tJ .

Let V = ∫∞0 ( f (πϕ(t))− t |πϕ(t)|) dt = ∫∞0 ∫
x∈πϕ(t)( f (x)− t) dx dt. By exchanging

the order of the double integral, we have

V =
∑
J∈S

[∫
x∈J

{∫ tJ

0
( f (x)− t) dt

}
dx

]

=
∑
J∈S

∫
x∈J

(
tJ f (x)− t2

J

2

)
dx .

Thus,

2V − ‖ f ‖2 =
∑
J∈S

∫
x∈J

2tJ f (x)− t2
J − f (x)2 dx

= −
∫ 1

0
( f (x)− ϕ(x))2 dx

= −‖ f − ϕ‖2.

Thus, 2V = ‖ f ‖2 − ‖ f − ϕ‖2 = H( f, ϕ).

Now, suppose that we know a prime interval I attaining the peak of the optimal
unimodal function ϕ. We call I the peak interval. Thus, every nonempty πϕ(t) contains
I . Let p be any point (e.g., the right endpoint) of I . Let us consider the function F(x) =∫ x

0 f (z) dz.
The minimum of F(x)− t x in the range x ≤ p is attained at the x-coordinate value of

the tangent point by a line with the slope t to the lower hull L(p) of the curve y = F(x).
Let x1(t) be the x-value of the tangent point. If t is a slope of an edge of the lower
hull, we choose any x-value within the edge as x1(t). Note that x1(t) is the unique value
minimizing F(x) − t x , if t is not a slope of an edge of the lower hull. Similarly, we
define x2(t) to be the x-coordinate value of the tangent point by a line with the slope
t to U(p). F(x) − t x is maximized at x = x2(t) in the range x ≥ p. Clearly, x1(t) is
a nondecreasing function and x2(t) is a nonincreasing function with respect to t . Thus,
π(t) = (x1(t), x2(t)] defines a pyramid map π , and its corresponding unimodal function
ψ is defined by ψ(x) = inf{t : x ∈ π(t)}.

LEMMA 2.5. The unimodal function ψ given above is an optimal approximation of f .
Moreover,ψ is the unique optimal approximation that is constant on each prime interval.
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PROOF.

H( f, ψ) =
∫ ∞

0
( f (π(t))− t |π(t)|) dt(∗)

=
∫ ∞

0
(F(x2(t))− F(x1(t))− t (x2(t)− x1(t))) dt

=
∫ ∞

0
(F(x2(t))− t x2(t)− (F(x1(t))− t x1(t))) dt

=
∫ ∞

0
[F(x2(t))− t x2(t)] dt −

∫ ∞
0

[F(x1(t))− t x1(t)] dt.

For each t , the integrand of the first term of (∗) is maximized and that of the second
term is minimized under the condition that x1(t) ≤ p ≤ x2(t), and hence H( f, ψ) is
maximized. Thus, ψ is an optimal unimodal approximation.

We next prove the uniqueness. Suppose that ϕ is any optimal approximation that is
constant on each prime interval. Because of maximality, H( f, ϕ) = H( f, ψ). Thus, the
measure of the values of t such that πϕ(t) �= π(t) must be 0, since π(t) is the unique
interval maximizing F(π(t)) − t |π(t)| if t is not a slope of an edge of L(p) or U(p).
Thus, inf{t : x ∈ πϕ(t)} = inf{t : x ∈ π(t)}, and hence ψ(x) = ϕ(x).

Now, we are ready to prove Theorem 2.2. Consider�(x) = ∫ x
0 ψ(z) dz for the above

ψ . Since ψ is piecewise constant, � is piecewise linear and continuous. Consider the
lower hull L(p). �(0) = F(0) = 0 by definition, and the y value of L(p) at x = 0 is
also 0, since the lower hull must contain the leftmost point of y = F(x).

Now, consider any edge e of L(p). For an x-value x0 of any point in e, ψ(x0) =
sup{t : x0 ∈ π(t)} = sup{t : x0 > x1(t)}. Since x0 > x1(t) for any t less than the slope
of e, ψ(x0) equals the slope of e. This means that ψ(x) equals the slope of L(p) for
each x-value except the x-values of the vertices of L(p). Therefore, ψ(x) equals the
derivative of L(p) for x ∈ [0, p] almost everywhere (i.e., except for a zero-measure
subset of [0, p]). Thus, y = �(x) coincides with L(p) in the range x ≤ p. Similarly,
we can show that y = �(x) coincides with U(p) in the range x ≥ p. Thus, we have
completed the proof of Theorem 2.2 for histograms.

Finally, we prove that Theorem 2.2 holds for a general integrable function f . We
consider a series fi (i = 0, 1, . . .) of histograms defined by fi (0) = f (0) and fi (x) =
f (s2−i ) for x ∈ ((s−1)2−i , s2−i ] for s = 1, 2, . . . , 2i . Since f is integrable,

∫
x∈I fi (x) dx

uniformly converges to
∫

x∈I f (x) dx for intervals I ⊆ [0, 1]; that is, for any ε > 0 there
exists N such that | ∫x∈I fi (x) −

∫
x∈I f (x) dx | < ε for any i > N and I ⊆ [0, 1]. In

particular, the integral function Fi of fi uniformly converges to F .
Thus, if we consider the optimal unimodal approximationϕi of fi , its integral function

�i uniformly converges to the integral function� of ϕ. On the other hand,�i uniformly
converges to L(p) for x ∈ [0, p] and U(p) for x ∈ [p, 1], where p is the limit of the
right endpoint of the peak interval of ϕi . Thus, Theorem 2.2 holds for f .

3. Algorithm for Histograms. Now, it is clear that we can compute the optimal uni-
modal approximation ϕ of a histogram f in polynomial time. For each i = 1, 2, . . . , n,
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Fig. 5. Lower convex hull tree T L and upper convex hull tree T U .

we consider the prime interval Ii as the peak interval, compute L(ri ) and U(ri ) for the
right endpoint ri of Ii , and compute ψi (x) as its derivative (i.e., slope function). We call
ψi the local optimal approximation with the peak index i . Then we selectψi minimizing
‖ f − ψi‖2 as the optimal unimodal approximation.

We describe an O(n) time algorithm based on this idea.
L(ri ) is the lower convex hull of the chain located to the left of ri , and the union

T L =⋃n
i=1 L(ri ) forms a tree called the lower convex hull tree. Similarly, we define the

tree T U =⋃n
i=1 U(ri ). Figure 5 illustrates lower convex hull tree T L and upper convex

hull tree T U. Each vertex of these trees is specified by its coordinate values, and T L

and T U are regarded as rooted trees with roots (0, 0) and (1, F(1)), respectively. Each
edge e of the trees is a line segment defined by three parameters: the slope t (e) and the
x-values x1(e) and x2(e) of the left and right endpoints of e, respectively.

LEMMA 3.1. T L and T U can be computed in linear time.

PROOF. We only consider T L, since T U is obtained analogously. Since y = F(x)
is piecewise linear, its trajectory is an x-monotone polygonal chain. Clearly, we can
compute the polygonal chain in linear time. The lower convex hull of the polygonal
chain is indeed the lower convex hull of the point set consisting of vertices of the
chain.

We run a plane-sweep convex hull algorithm adding points of the point set one-by-one
in the sorted order updating the convex hull (Beneath-and-Beyond method [6], a version
of Graham’s scan [10]). We are only interested in the lower convex hull. When a new
point is inserted, a part of the previous lower convex hull is deleted in the convex hull
algorithm; however, in order to construct the lower convex hull tree, we keep it as the
“old branch,” so that the union of all branches forms the lower convex hull tree. Similarly
to the analysis of Graham’s scan, this algorithm is linear time for a sorted set of points.
See [7] for details.

In order to compute the optimal unimodal approximation ϕ, we find the index i
minimizing ‖ f − ψi‖2 by using T L and T U efficiently. For the purpose, we utilize
another form of the objective function given below.

An interval J is called a balancing interval for a unimodal functionψ(x) if
∫

x∈J ( f (x)−
ψ(x)) dx = 0.
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LEMMA 3.2. If ψ is a local optimal unimodal approximation of f , then each step J of
ψ is a balancing interval.

PROOF. Let t0 be the height of the step, and let t1 and t2 be the heights of adjacent steps
such that t1 < t0 < t2. Since ψ(x) = t0 for x ∈ J , the balancing condition means that
t0 = f̂ J , where f̂ J = (

∫
x∈J f (x) dx)/|J | is the average value of f (x) over x ∈ J . The

value
∫

x∈J ( f (x)− t)2 dx must be minimized at t = t0, since ϕ(x) = t0 for x ∈ J :

∫
x∈J
( f (x)− t)2 dx =

(∫
x∈J
( f (x)− t) dx

)2

+
∫

x∈J
f (x)2 dx −

(∫
x∈J

f (x)

)2

.

The second and third terms are constants, and the first term takes its unique minimal
value at t = f̂ J . Thus, t0 = f̂ J .

LEMMA 3.3. A unimodal function ϕ gives the optimal unimodal approximation if and
only if it maximizes ‖ϕ‖2 under the condition that each step of ϕ is a balancing interval.

PROOF. For each step J of ϕ, it follows from the balancing condition that∫
x∈J
( f (x)− ϕ(x))2 dx =

∫
x∈J
( f (x)− f̂ J )

2 dx(**)

= −2 f̂ J

∫
x∈J

f (x) dx +
∫

x∈J
f̂ 2

J dx

+
∫

x∈J
f (x)2 dx

= −2 f̂ J

∫
x∈J
( f (x)− f̂ J ) dx −

∫
x∈J

f̂ 2
J dx

+
∫

x∈J
f (x)2 dx .

The first term of (∗∗) equals zero since f̂ J is the average value, and the second term
equals − ∫x∈J ϕ(x)

2 dx . Thus,∫
x∈J
( f (x)− ϕ(x))2 dx = −

∫
x∈J

ϕ(x)2 dx +
∫

x∈J
f (x)2 dx .

Thus, ‖ f −ϕ‖2 = ‖ f ‖2−‖ϕ‖2, and ϕ minimizes ‖ f −ϕ‖2 if and only if it maximizes
‖ϕ‖2.

Thus, it suffices to find ψi with the minimum squared norm ‖ψi‖2. We construct
a data structure such that we can compute ‖ψi‖2 for i = 1, 2, . . . , n in O(n) time.
Consequently, we can compute the optimal unimodal approximation in O(n) time. The
structure is constructed by giving weights to edges of T L and T U. For each edge e in T L

or T U, we define its weight w(e) = (x2(e) − x1(e))t (e)2, where t (e), x1(e), and x2(e)
are the slopes and x-values of the left and right endpoints of e, respectively.

For each vertex v of T L (resp. T U), let W L(v) (resp. W U(v)) be the sum of the weights
of edges on the unique path from v to the root of the tree.
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LEMMA 3.4. For each i = 1, 2, . . . , n, let vL
i and vU

i be the vertices of T L and T U

which have ri as their x-values. Then ‖ψi‖2 = W L(vL
i )+W U(vU

i ).

PROOF. Straightforward from the definition of ψi .

THEOREM 3.5. The optimal unimodal approximation of a histogram f with n steps can
be computed in O(n) time.

PROOF. The values W L(vL
i ) and W U(vU

i ) for all i = 1, 2, . . . , n are computed in
O(n) time if we compute them in depth-first order. Thus, we have values ‖ψi‖2 for
i = 1, 2, . . . , n, and compute the index i maximizing ‖ψi‖2 in O(n) time. Once we
know the index i , the optimal unimodal approximation is obtained as the slope function
of the concatenation of corresponding paths of T L and T U.

4. Approximating a Piecewise Linear Function. If we do not mind computational
complexity, we can compute the optimal pyramid of a general integrable function f on
[0, 1] by considering a series fi (i = 0, 1, . . .) of histograms as discussed in the end of
Section 2 to obtain ϕ from the optimal unimodal approximation ϕi of fi .

However, if we consider the computational complexity, we should design an algorithm
depending on the description of the function f . In this section we consider the case
where f is a piecewise linear function consisting of n linear pieces ( f is not necessarily
continuous).

The interval [0, 1] is subdivided into prime intervals Ik = (
k, rk] for k = 1, 2, . . . , n,
and f is a linear function in each interval Ik .

From Theorem 2.2, once we know the x-value p of the peak of ϕ, then the curve
y = �(x) is the lower hull L(p) (resp. upper hull U(p)) of the curve y = F(x) for
x ∈ [0, p] (resp. x ∈ [p, 1]).

Clearly, we can select the peak position p from {ri : i = 0, 1, 2, . . . , n}, where
r0 = 0. Thus, we can basically apply the same algorithm as in the histogram case. The
only difference is that the function y = F(x) is piecewise quadratic, instead of piecewise
linear. We observe that �(x) = F(x) in each nonlinear part of the curve y = �(x),
since a nonlinear part of the boundary curve of the convex hull of an object should be a
portion of the object.

Analogously we can construct trees T L and T U in linear time by modifying the plane-
sweep algorithm for computing a convex hull, assuming that the bitangent line between
two parabolas can be computed in constant time. Note that the computation of a bitangent
line of two parabolas can be done if we can solve a quadratic equation numerically to a
sufficient precision. A branching vertex of the trees does not need to correspond to an
endpoint of a prime interval; precisely speaking, it can be an endpoint of a bitangent of
parabolas.

There are two kinds of edges in the trees, linear edges and curved edges. A curved
edge must follow the curve y = F(x); thus, in the same range of x ,ψ(x) = f (x) for the
corresponding unimodal approximationψ . The weightw(e) equals (x2(e)− x1(e))t (e)2
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for a linear edge e, while we define

w(e) =
∫ x2(e)

x1(e)
f (x)2 dx

for a curved edge e, where we recall that x1(e) and x2(e) are x values of the left and
right endpoints of e, respectively. The computation of weights of all edges takes O(n)
time: We first compute V (x(v)) = ∫ x(v)

0 f (x)2 dx for all the x-values x(v) of vertices
of trees, and then compute w(e) = V (x2(e))− V (x1(e)) for all edges e.

Now, the rest of the algorithm is exactly the same as the case of histogram, and we
have the following theorem:

THEOREM 4.1. The optimal unimodal approximation ϕ of a piecewise linear function
f with n linear pieces can be computed in O(n) time.

The same strategy works for an input function f that is a piecewise algebraic function
of degree d , provided that we can compute all the bitangents of two algebraic curves of
degrees d + 1 in O(1) time.

5. Piecewise Unimodal Approximation of a Function. Although we have considered
the problem where the output is unimodal, we often need to approximate a function with
a function that has a small number of maximal peaks. A natural problem formulation is
that we approximate f with a function ψ that has at most k peaks such that the squared
L2-distance ‖ f − ψ‖2 is minimized. This can be done by using dynamic programming
in which we use the unimodal approximation algorithm as a subroutine [5].

Here, we consider another problem in which we approximate f with a function g that
has the minimum number of pieces under the condition that each piece of g has at most
one maximal peak and the L2-distance between the piece and the corresponding portion
of f is within a given threshold ε.

Let y = f (x) be a (piecewise linear) input function. The following greedy algorithm
computes a piecewise unimodal approximation of a given function f with a small number
of pieces:

1. Compute the largest index k such that there exists a unimodal approximation g0 of f
within the interval [0, rk].

2. Recursively compute the piecewise unimodal approximation g1 of f within [
k+1, n]
with an error ε.

3. Output the concatenation of g0 and g1.

The following lemma is easy to see:

LEMMA 5.1. The greedy algorithm outputs a piecewise unimodal approximation with
the minimum number of pieces.

We can now apply an idea by Agarwal et al. [1].
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THEOREM 5.2. A piecewise unimodal approximation with the minimum number of
pieces can be computed in O(n log n) time.

PROOF. We apply a combination of the doubling strategy and binary search to com-
pute k in step 1. We check the condition whether f has or does not have a unimodal
approximation (with an error less than ε) in the range [0, r2i ] for each i = 0, 1, . . . .
Suppose j is the first violating value of i . Then k must satisfy 2 j−1 ≤ k < 2 j . Now, we
perform binary search in the range for k. Thus, it takes O(2 j log k) = O(k log k) time
for computing g0. The rest of analysis is routine.

6. Application to Data Mining. We give a data mining application of our algorithm.
Consider a data set consisting of N data items, each of them containing a real-valued
attribute A() and an objective binary attribute B(). For example, suppose that A is
“income” and B is “Ph.D.”, and a data v has values A(v) = 75,000 and B(v) = yes.
This means that the person associated with the data has a Ph.D. and his/her (annual)
income is $75,000.

An association rule with the form A(v) ∈ J → B(v) = yes is called an inter-
val rule if J is an interval. We would like to find the best interval J such that the
above rule separates data into “yes” and “no” with respect to the objective attribute
B. For evaluating the interval rules, we define Support(J ) = |{v : A(v) ∈ J }|/N ,
Hit(J ) = |{v : A(v) ∈ J, B(v) = 1}|/N , Conf(J ) = Hit(J )/Support(J ), and
Ent(J ) = Conf(J ) log(Conf(J ))−1 + (1 − Conf(J )) log(1 − Conf(J ))−1. Similarly,
for the complement J̄ of J , Support( J̄ ), Hit( J̄ ), Conf( J̄ ), and Ent( J̄ ) are defined.

The entropy (precisely speaking, entropy of data splitting into J and J̄ ) defined below
is a popular measurement for a data splitting [11]:

Ent(J ; J̄ ) = Support(J )Ent(J )+ Support( J̄ )Ent( J̄ ).

The interval minimizing the entropy is called the optimal entropy interval. Given a data
set, we divide the interval of values of A into n prime intervals (for simplicity, we assume
n divides N ) such that Support(I ) = 1/n for each prime interval I , and precompute
Conf(I ) for each prime interval. In [8] an O(n log n) expected time algorithm is given
for computing the optimal entropy interval that is obtained as a union of prime intervals.

We can define a histogram f (x)by f (x) = Conf(I ) for x ∈ I , and consider its optimal
unimodal approximation. We modify the criterion for the optimal entropy interval such
that the interval minimizes the entropy of the data separation under the condition that it
contains the peak position of the optimal pyramid πϕ . Then this modification does not
practically affect the data separation, since the optimal entropy interval almost always
contains the peak of πϕ when the rule gives a practically good data separation.

Because of the convexity of the entropy function (see [9] for details), the modified
optimal entropy interval is obtained as a horizontal section πϕ(t) of the optimal pyramid
πϕ for a suitable height t . As we have shown, we can compute the optimal pyramid
in O(n) time and the pyramid has O(n) different horizontal sections. Thus, we can
compute the entropy values of all different horizontal slices in O(n) time, and hence we
can compute the optimal entropy interval in O(n) time.
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Moreover, users of a data mining system often feel that they need an intermediate
representation between the interval rule and the original function Conf(), especially
when we want to visualize the correlation between A() and B(). The optimal unimodal
approximation is a good intermediate visual representation to show the correlation.
Furthermore, if we use the optimal piecewise approximation, we can consider a more
flexible representation, and possibly mine a hidden precious rule that cannot be found
by using interval rules.

7. Concluding Remarks. We often need to consider a different distance from the L2-
distance. The L∞-distance looks easy to handle: If we want to decide whether we have
a unimodal approximation whose L∞-distance from the input is at most (a given) ε, we
can answer it in linear time easily. The optimization version can be solved in O(n log n)
time if we apply parametric searching: however, we do not know a linear time algorithm
for the optimization problem. For the L p-distance for a constant p, the authors recently
obtained an O(n log2 n) time algorithm extending the idea of this paper combined with
range searching methods [5].

A two-dimensional version [4] and a higher-dimensional version [3] of this problem
have been considered in application to data mining, where the complexity of the problem
highly depends on the definition of multivariable unimodal functions. The above works
only deal with single-peak problems. The problem of approximating a given surface by
another surface with k peaks is a very attractive problem, and is related to the simpli-
fication of the Morse complex of a surface, although the authors do not know of any
theoretical algorithm on it.
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