Erratum to "Approximability of the Subset Sum Reconfiguration Problem*"

Takehiro Ito 1 and Erik D. Demaine ${ }^{2}$
${ }^{1}$ Graduate School of Information Sciences, Tohoku University, Japan
takehiro@ecei.tohoku.ac.jp
${ }^{2}$ MIT Computer Science and Artificial Intelligence Laboratory, USA
edemaine@mit.edu

Abstract

There is a flaw in the proof of Theorem 1 of the original article [2] which claims that the subset sum reconfiguration problem is strongly NP-hard. This erratum proves that the problem is NP-hard.

1 New Complexity Result

We replace Theorem 1 of [2] with the following theorem.
Theorem 1. Subset sum reconfiguration is NP-hard.
Proof. We give a polynomial-time reduction from the Partition problem [1] to our problem. In PARTITION, we are given a set U of $n-1$ elements $u_{1}, u_{2}, \ldots, u_{n-1}$; each element $u_{i} \in U$ has a positive integer size $s\left(u_{i}\right)$. Then, the partition problem is to find a subset U^{\prime} of U such that $\sum_{u \in U^{\prime}} s(u)=\frac{1}{2} \sum_{u \in U} s(u)$. It is known that Partition is NP-complete [1].

Given an instance of partition, we construct the corresponding instance of SUBSET SUM RECONFIGURATION. The set A consists of n items $a_{1}, a_{2}, \ldots, a_{n-1}, b$: let $s\left(a_{i}\right)=s\left(u_{i}\right)$ for each $i, 1 \leq i \leq n-1$, and let $s(b)=\frac{1}{2} \sum_{u \in U} s(u)$. Then, each item a_{i} corresponds to the element u_{i} in U. The knapsack is of capacity $c=\sum_{u \in U} s(u)$, and set the threshold $k=\frac{1}{2} \sum_{u \in U} s(u)$. Finally, the two packings A_{0} and A_{t} are defined as follows: $A_{0}=\{b\}$ and $A_{t}=U$, and hence both A_{0} and A_{t} are of total size at least k. This completes the construction of the corresponding instance.

We first show that $\operatorname{OPT}\left(A_{0}, A_{t}\right) \geq k$ if there exists a desired subset U^{\prime} for the instance of Partition. Because $c-s(b)=\frac{1}{2} \sum_{u \in U} s(u)=\sum_{u \in U^{\prime}} s(u)$, there exists a reconfiguration sequence \mathcal{P} between the two packings A_{0} and A_{t}, as follows: add the items in U^{\prime} one by one; remove the item b; and add the items in $U \backslash U^{\prime}$ one by one. Because the removal is executed only for the item b in the reconfiguration sequence \mathcal{P} above, the objective value of \mathcal{P} is $f(\mathcal{P})=s\left(U^{\prime}\right)=\frac{1}{2} \sum_{u \in U} s(u)=k$. Therefore, we have $\operatorname{OPT}\left(A_{0}, A_{t}\right) \geq f(\mathcal{P})=k$ if there exists a desired subset U^{\prime} for the instance of Partition.

[^0]Conversely, we show that there exists a desired subset U^{\prime} for the instance of PARTITION if $\operatorname{OPT}\left(A_{0}, A_{t}\right) \geq k$. Consider an arbitrary optimal reconfiguration sequence $\mathcal{P}^{*}=\left\langle A_{0}, A_{1}^{*}, A_{2}^{*}, \ldots, A_{t-1}^{*}, A_{t}\right\rangle$ between the two packings A_{0} and A_{t}. Because $b \in A_{0}$ and $b \notin A_{t}$, there exists a packing A_{j}^{*} in \mathcal{P}^{*} which is obtained from A_{j-1}^{*} by removing the item b. Then,

$$
s\left(A_{j}^{*}\right)=s\left(A_{j-1}^{*}\right)-s(b) \leq c-s(b)=\frac{1}{2} \sum_{u \in U} s(u)=k .
$$

On the other hand, $s\left(A_{j}^{*}\right) \geq f\left(\mathcal{P}^{*}\right)=\operatorname{OPT}\left(A_{0}, A_{t}\right) \geq k$, and hence $s\left(A_{j}^{*}\right)=k=$ $\frac{1}{2} \sum_{u \in U} s(u)$. Because $b \notin A_{j}^{*}$, we have $A_{j}^{*} \subset U$. Therefore, there exists a subset $U^{\prime}=A_{j}^{*}$ of U such that $\sum_{u \in U^{\prime}} s(u)=\frac{1}{2} \sum_{u \in U} s(u)$ if $\operatorname{OPT}\left(A_{0}, A_{t}\right) \geq k$.

This completes the proof of the theorem.

Theorem 1 of this erratum immediately implies the following corollary, which is the replacement of Corollary 1 of [2].

Corollary 1. Maxmin subset sum reconfiguration is NP-hard.

Acknowledgment

We would like to thank Robin Houston and Willem Heijltjes for pointing out the flaw in the original proof.

References

1. M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide to the Theory of NP-Completeness, Freeman, San Francisco, CA, 1979.
2. T. Ito and E. D. Demaine, Approximability of the subset sum reconfiguration problem, To appear in J. Combinatorial Optimization, DOI:10.1007/ s10878-012-9562-z

[^0]: * DOI of the original article: $10.1007 /$ s10878-012-9562-z

