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Abstract. There is a flaw in the proof of Theorem 1 of the original
article [2] which claims that the subset sum reconfiguration problem
is strongly NP-hard. This erratum proves that the problem is NP-hard.

1 New Complexity Result

We replace Theorem 1 of [2] with the following theorem.

Theorem 1. Subset sum reconfiguration is NP-hard.

Proof. We give a polynomial-time reduction from the partition problem [1] to
our problem. In partition, we are given a set U of n−1 elements u1, u2, . . . , un−1;
each element ui ∈ U has a positive integer size s(ui). Then, the partition prob-
lem is to find a subset U ′ of U such that

∑
u∈U ′ s(u) = 1

2

∑
u∈U s(u). It is known

that partition is NP-complete [1].
Given an instance of partition, we construct the corresponding instance of

subset sum reconfiguration. The setA consists of n items a1, a2, . . . , an−1, b:
let s(ai) = s(ui) for each i, 1 ≤ i ≤ n − 1, and let s(b) = 1

2

∑
u∈U s(u). Then,

each item ai corresponds to the element ui in U . The knapsack is of capacity
c =

∑
u∈U s(u), and set the threshold k = 1

2

∑
u∈U s(u). Finally, the two packings

A0 and At are defined as follows: A0 = {b} and At = U , and hence both
A0 and At are of total size at least k. This completes the construction of the
corresponding instance.

We first show that OPT(A0, At) ≥ k if there exists a desired subset U ′

for the instance of partition. Because c − s(b) = 1
2

∑
u∈U s(u) =

∑
u∈U ′ s(u),

there exists a reconfiguration sequence P between the two packings A0 and
At, as follows: add the items in U ′ one by one; remove the item b; and add
the items in U \ U ′ one by one. Because the removal is executed only for the
item b in the reconfiguration sequence P above, the objective value of P is
f(P) = s(U ′) = 1

2

∑
u∈U s(u) = k. Therefore, we have OPT(A0, At) ≥ f(P) = k

if there exists a desired subset U ′ for the instance of partition.

⋆ DOI of the original article: 10.1007/s10878-012-9562-z



Conversely, we show that there exists a desired subset U ′ for the instance of
partition if OPT(A0, At) ≥ k. Consider an arbitrary optimal reconfiguration
sequence P∗ = ⟨A0, A

∗
1, A

∗
2, . . . , A

∗
t−1, At⟩ between the two packings A0 and At.

Because b ∈ A0 and b /∈ At, there exists a packing A∗
j in P∗ which is obtained

from A∗
j−1 by removing the item b. Then,

s(A∗
j ) = s(A∗

j−1)− s(b) ≤ c− s(b) =
1

2

∑
u∈U

s(u) = k.

On the other hand, s(A∗
j ) ≥ f(P∗) = OPT(A0, At) ≥ k, and hence s(A∗

j ) = k =
1
2

∑
u∈U s(u). Because b /∈ A∗

j , we have A∗
j ⊂ U . Therefore, there exists a subset

U ′ = A∗
j of U such that

∑
u∈U ′ s(u) = 1

2

∑
u∈U s(u) if OPT(A0, At) ≥ k.

This completes the proof of the theorem. ⊓⊔

Theorem 1 of this erratum immediately implies the following corollary, which
is the replacement of Corollary 1 of [2].

Corollary 1. Maxmin subset sum reconfiguration is NP-hard.
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