

Mathematics that the professor loved

徳山 豪 東北大学

Geometry that professors love

博士たちの愛する幾何

Agenda

- Great problems in mathematics
- 23 problems proposed by Hilbert (1900)
 - Hilbertの23の問題(1900)
 - The list of grand challenges of modern mathematics
 - 現代数学をリードした数学プラン
- How great mathematicians think
 - Equi-decomposability problem (分割同值問題)
 - Theorem of Bolyai and Gerwien
 - What Gauss thought....
- Wide scope is powerful tool for a scientist
 - Geometric problem is often not solvable by only using geometry
 - Number theory and group theory to solve geometric problems
 - Same in any area of science and engineering

Equi-decomposability

- Given two polygons P and P', can we show that they have the same area?
- 二つの多角形PとP'があるとき、それらが同一面積 を持つことをどうやって示す?
- Equidecomposing polygons
 - Decompose P into a finite number of pieces, and assemble them to make P'
 - Pを部分多角形に分割して、組み立てなおしてP'を作れるか?

Theorem of Bolyai-Gerwien (1832)

- Any pair of polygons with same area are Equidecomposable(分割同值)
- Example:

タングラムパズル

THE MEASUREMENT OF AREA AND VOLUME

FIG. 20

EQUIDECOMPOSABILITY OF POLYGONS

FIG. 27

演習問題による証明 Solution by a series of exercises

- Show that a unit area rectangle is equidecomposable to a unit square
 - If the side edge is rational, not difficult, but in general..
 - 面積1の長方形は単位正方形と分割同値であることを示せ
- Using the above fact, sbhow that any pair of equiarea polygons are equidecomposable.
- 上の事実を用いて、任意の2つの面積が等しい多角形が分割同値であることを示せ
- Theorem of Bolyai and Gerwien
 - Farkas Boyai: Invented non-Euclidean geometry with his son, Janos Bolyai

Equideomposablity means

- In 2dim, decomposition, scaling, translation, and rotation can create any "shape"
- What is area of a figure? It is the size of square equidecomposable to the figure.
- Gauss: Different in 3D space
 - 三角錐の体積の公式をどうやって小学生に教えるか?

How to teach the volume formula of tetrahedra to kid?

The 3rd problem of Hilbert

- Can we show that two prisms with the same base area and height are equidecomposable?
 - Solved in 1900: Earliest solution among 23 problems
- Max Dehn (22 years old):
 - Unit volume simplex is not equidecomposable to the unit cube
 - ・正4面体と立方体は分割同値ではない
 - This is number theory problem

Dehn's idea: 1

Two values for an edge e of a polytope P 多面体Pの辺e について、2つの量を考える。

1: Length *l*(e)

2: Angle $\theta(e)$ between two faces

3: Use the pair (I(e), θ (e) mod 2π)

Idea of Dehn: 2

We define equivalence that for a rational number $q(a,q\theta) = (qa, \theta)$

2次元のイメージ図: 面積不変、分割も簡単

3次元の場合でも、辺の長さがc倍で角度1/cだと、辺の周りでの体積は不変に思える(これは動機なので、当面証明不要)

Tensor product over the rational field Q: Almost multiplication, but restricted (like filtration)

$$a \otimes q\theta = qa \otimes \theta \text{ if } q \in Q$$

 $a \otimes \theta + a \otimes \tau = a \otimes (\theta + \tau)$
 $a \otimes \theta + b \otimes \theta = (a + b) \otimes \theta$
 $0 \otimes \theta = a \otimes 0 = 0$

注意: 物理や量子計算などでの通常のテンソル積では、 項 はベクトルで、Qの代わりに実数や複素数を用いる

Example:

$$\sqrt{2} \otimes (\pi/3) = (\sqrt{2}/6) \otimes 2\pi = (\sqrt{2}/6) \otimes 0 = 0$$

$$1 \otimes \sqrt{2}\pi = 3 \otimes (\sqrt{2}\pi/3) \neq 0$$

$$a \otimes \theta + a \otimes (\pi - \theta) = a \otimes \pi = 0$$

Dehn invariant

$$f(P) = \sum_{e:edges} l(e) \otimes \theta(e)$$

Lemma: If we decompose P into two polytopes P1 and P2

$$f(P) = f(P1) + f(P2)$$

Theorem: If P and P'are equidecomposable, f(P)=f(P')

つまり、Dehn不変量が異なる多面体は互いに分割同値でない

Dehn invariants of cube and simplex

- Dehn invariant of any cube is 0
 - Why?
- The Dehn invariant of a simplex of unit-edge length is:

$$f(P) = \sum_{e:edges} l(e) \otimes \theta(e) = 6 \otimes \theta(e)$$

$$=6\otimes \arccos(1/3)$$

There is not quotient number q such that $cos(q\pi)=1/3$

There is no quotient number q such that $cos(q\pi)=1/n$ for odd n

$$\cos (k+1) x = 2 \cos x \cos kx - \cos (k-1) x$$

Thus, if $\cos x = 1/n$, $\cos k x = A(k)/n^k$ where A(k) is coprime to n.

Thus, cos kx cannot be an integer for any k.

But, if q = a/b, $\cos 2bx = 1$. A contradiction.

The implication of Dehn's theorem

- Difference between 2-dim and 3-dim geometry
 - Volume is not really analogue of area
- We need analytic method to show the volume formula of a tetrahedra.
- Invariant is fundamental for classification of geometric objects
 - Area, volume
 - We need more
- Algebraic method is fundamental for geometry
 - Dehn's surgery, Dehn's twist
 - Homology (Poincare's claim in 1900)

More about it

- If two polytopes P and Q have same volume and Dehn invariant, can we decide whether P and Q are equidecomposable?
- Difficult looking: Isomorphism problem of graphs, geometric objects, etc
- After 65 years, Sydler solved it by using group theory,
 - Yes, P and Q are always equidecomposable.
- Algorithmic problems
 - Computation of Dehn invariant
 - Finding exact method for equi-decomposing
 - Minimum decomposition for 2-dim problem
 - Probably NP-hard, how to approximate??

Modern geometry

- Invariance and transformation
 - Invariants and classification: Homology, Homotopy, etc.
 - Poincare's claim: Homology classify geometric surfaces
 - Wrong!: "Exiotic sphere" exists.
 - Poincare's conjecture(1904): Homotopy determines spheres.
 - Perelman (2003) proved it
 - Thurston program, Morse theory
 - Graph isomorphism
 - Invariants: Order sequence, Neighbor degree set
 - We have not yet found good invariants.
- Invariants and information science
 - Geometric matching and geometric information retrieval
 - E.g., We can obtain geometric objects in a database that has the same homology as a torus (donut)
 - We need invariants to represent more detail shape.
 - This is not completely solved, and very challenging problem
- Serious: We do not know whether our space is exotic or not!
- Dehn seminar: organized by Prof. Fujiwara