Day 11 Primarity Test

Prime numbers that professors love 博士たちの愛する素数

Prime number, its enchantment

- Prime numbers
 - 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37.
- There are infinite number of prime numbers
 - Distribution of prime numbers
 - Prime number theorem
 - Riemann hypothesis
- The arithmetic of mod p \rightarrow Finite field
- Important computation problems
 - Common divisor
 - Divisor
 - Prime number generation

Magic of powers of numbers

- I noticed a strange rule when I was a child
- If we compute powers of numbers, and list its lowest digit, then....
- 1 2 3 4 5 6 7 8 9
- 1 4 9 6 5 6 9 4 1
- 1 8 7 4 5 6 3 2 9
- 1 6 1 6 5 6 1 6 1
- 1 2 3 4 5 6 7 8 9

Primarity test: idea

- p= 11111111111 is a prime?
 - Fermat test (Fermat's theorem)
 - If p is a prime, for each a < p
 a^{p-1} –1 is divisible by p
 - If Fermat test fails, not a prime
 - If Fermat test pass, either a prime number or a "Carmichael number"
 - How to exclude Carmichael numbers?

Primarity test algorithm

- Do 100 times
 - Randomly select a<p</p>
 - $\text{ compute } z = a^{(p-1)/2} \pmod{p}$
 - If z is not 1 nor p-1, return "non prime"
- If z = 1 for all 100 times, return "non prime"
- Otherwise, return "prime or prime power"

Fermat (little) theorem

- Theorem 1: For b<p, b^{p-1} mod p =1
 Proof: expand (1+x)^p
- Theorem 2: b^{(p-1)/2}=1 or -1 mod p.
 Moreover, it becomes -1 for (p-1)/2 numbers.
 - Proof: Consider solution of euqation. $x^{(p-1)/2} = 1$ has at most (p-1)/2 solutions.

Fermat test is not sufficient

• Euler's theorem For coprime n and b, $b^{\varphi(n)} \equiv 1 \pmod{n}$

 $\varphi(n)$ is the number of natural numbers less than n that are coprime to n

Euler number becomes n-1 if and only if n is prime. If n = pqr, $\varphi(n) = (p-1)(q-1)(r-1)$

Carmichael number

For n = pqr and b coprime to n,

$$b^{\lambda(n)} \equiv 1 \,(\mathrm{mod}\, n)$$

$$\lambda(n) = LCM(p-1, q-1, r-1)$$

If $n = 3 \times 11 \times 17 = 561$? (Carmichael number)

Difference: For a Carmichal number, the power of b by (n-1)/2 is always 1

Old Japanese mathematics

- 105 subtraction: Jinko-ki (M. Yoshida 1627)
- 百五減算: 塵劫記(吉田光由、1627)
- We have less than 180 stones. 2 stones remain divided by 7, 1 remains divided by 5, and 1 remains divided by 3. How many?

碁石がいくつかあります。7個づつに分けると2個 余ります。5個づつに分けると1個余ります。3個 づつに分けると1個余ります。 碁石はいくつあ りますか? ただし、碁石は最大で180個しか ありません。

中国人剰余定理 (Chinese reminder theorem)

n=n₁,n₂,..n_k :mutiple of k coprime numbers
 m_i : a positive number less than n_i
 ⇒ There exist a unique nonnegative m<n satisfying m≡m_i (mod n_i) i=1,2,..,k

Very old theorem! Algorithm for finding m: Just similar to the Euclid's algoirthm

Justify primarity test

• Theorem (Primarity test)

Assume n = pq where p and q are coprime. Then

If there is an a such that a $(n-1)/2 \equiv -1$

There is a number b such that

b
$$(n-1)/2$$
 is neither 1 nor -1

Also, there are more than (n-1)/2 such b

Chinese remainder theorem proves it!

Proof

- a $(n-1)/2 \equiv -1 \mod n$
- n = km
- CRT implies we have the following k
 - $b \equiv a \mod k$
 - $b \equiv 1 \mod m$
- $b^{(n-1)/2} \equiv -1 \mod k$
- $b^{(n-1)/2} \equiv 1 \mod m$
- Thus, b (n-1)/2 mod n is neither 1 nor -1

Correctness of primarity test

- $c=a (n-1)/2 \mod n$
- 1. If c is 1 nor -1, n is not a prime
 - 1. Fermat Theorem
- 2. If always 1, n is not a prime
 - 1. Fermat Theorem and Primarity test theorem
- 3. If mix of 1 and -1, n is prime

But we cannot examine all a , thus 2 and 3 only holds with a high probability

The failure probability

- A prime is judged wrongly a composite
 - $a^{(p-1)/2} = 1$ holds for all 100 cadnidates of a
 - Probability 1/2100
- A composite is judged as a prime
 - There is an a to become -1, and it beomes
 1 or -1 for all 100 candidates of a
 - Probability 1/2¹⁰⁰