Day 11

Primarity Test

Prime numbers that professors love

博士たちの愛する素数
Prime number, its enchantment

- Prime numbers
- $2,3,5,7,11,13,17,19,23,29,31,37$.
- There are infinite number of prime numbers
- Distribution of prime numbers
- Prime number theorem
- Riemann hypothesis
- The arithmetic of mod $p \rightarrow$ Finite field
- Important computation problems
- Common divisor
- Divisor
- Prime number generation

Magic of powers of numbers

- I noticed a strange rule when I was a child
- If we compute powers of numbers, and list its lowest digit, then....
-1 23456789
-1 49656941
-1 87456329
-1 616566161
-1 23456789

Primarity test: idea

- $\mathrm{p}=111111111111$ is a prime?
- Fermat test (Fermat's theorem)
- If p is a prime, for each $a<p$
$a^{p-1}-1$ is divisible by p
- If Fermat test fails, not a prime
- If Fermat test pass, either a prime number or a "Carmichael number"
- How to exclude Carmichael numbers?

Primarity test algorithm

- Do 100 times
- Randomly select $\mathrm{a}<\mathrm{p}$
- compute $z=a^{(p-1) / 2}(\bmod p)$
- If z is not 1 nor $p-1$, return "non prime"
- If $z=1$ for all 100 times, return "non prime"
- Otherwise, return "prime or prime power"

Fermat (little) theorem

- Theorem 1: For $b<p, b^{p-1} \bmod p=1$ - Proof: expand $(1+x)^{p}$
- Theorem 2: $\quad b^{(p-1) / 2}=1$ or $-1 \bmod p$. Moreover, it becomes -1 for ($p-1$)/2 numbers.
- Proof: Consider solution of euqation. $x^{(p-1) / 2}=1$ has at most $(p-1) / 2$ solutions.

Fermat test is not sufficient

- Euler's theorem

For coprime n and b ,
$b^{\varphi(n)} \equiv 1(\bmod n)$
$\varphi(n)$ is the number of natural numbers less than n that are coprime to n

Euler number becomes n - 1 if and only if n is prime.
If $\mathrm{n}=\mathrm{pqr}, \varphi(n)=(\mathrm{p}-1)(\mathrm{q}-1)(\mathrm{r}-1)$

Carmichael number

For $\mathrm{n}=\mathrm{par}$ and b coprime to n ,

$$
\begin{aligned}
& b^{\lambda(n)} \equiv 1(\bmod n) \\
& \lambda(n)=\operatorname{LCM}(p-1, q-1, r-1) \\
& \text { If } \mathrm{n}=3 \times 11 \times 17=561 ? \text { (Carmichael number) }
\end{aligned}
$$

Difference: For a Carmichal number, the power of b by $(n-1) / 2$ is always 1

Old Japanese mathematics

－ 105 subtraction：Jinko－ki（M．Yoshida 1627）
－百五減算：塵劫記（吉田光由，1627）
－We have less than 180 stones． 2 stones remain divided by 7,1 remains divided by 5 ， and 1 remains divided by 3 ．How many？
碁石がいくつかあります。 7 個づつに分けると2個余ります。5個づつに分けると1個余ります。3個 づつに分けると1個余ります。 碁石はいくつあ りますか？ただし，碁石は最大で180個しか ありません。

中国人剰余定理 （Chinese reminder theorem）

$\mathrm{n}=\mathrm{n}_{1}, \mathrm{n}_{2}, . . \mathrm{n}_{\mathrm{k}}$ ：mutiple of k coprime numbers
m_{i} ：a positive number less than n_{i}
\Rightarrow There exist a unique nonnegative $\mathrm{m}<\mathrm{n}$ satisfying $m \equiv m_{i}\left(\bmod n_{i}\right) \quad i=1,2, . ., k$

Very old theorem！ Algorithm for finding m：Just similar to the Euclid＇s algoirthm

Justify primarity test

- Theorem (Primarity test)

Assume $\mathrm{n}=\mathrm{pq}$ where p and q are coprime. Then
If there is an a such that $a^{(n-1) / 2} \equiv-1$
There is a number b such that
$b(n-1) / 2$ is neither 1 nor -1
Also, there are more than $(n-1) / 2$ such b
Chinese remainder theorem proves it!

Proof

- $\mathrm{a}^{(\mathrm{n}-1) / 2} \equiv-1 \bmod n$
- $\mathrm{n}=\mathrm{km}$
- CRT implies we have the following k
- $b \equiv a \bmod k$
- $b \equiv 1 \bmod m$
- $b^{(n-1) / 2} \equiv-1 \bmod k$
- $b^{(n-1) / 2} \equiv 1 \bmod m$
- Thus, $b^{(n-1) / 2} \bmod n$ is neither 1 nor -1

Correctness of primarity test

$\mathrm{C}=\mathrm{a}^{(\mathrm{n}-1) / 2 \bmod \mathrm{n}}$

1. If c is 1 nor $-1, \mathrm{n}$ is not a prime
2. Fermat Theorem
3. If always $1, \mathrm{n}$ is not a prime
4. Fermat Theorem and Primarity test theorem
5. If mix of 1 and $-1, n$ is prime

But we cannot examine all a, thus 2 and 3 only holds with a high probability

The failure probability

- A prime is judged wrongly a composite
- $\mathrm{a}^{(\mathrm{p}-1) / 2}=1$ holds for all 100 cadnidates of a
- Probability $1 / 2^{100}$
- A composite is judged as a prime
- There is an a to become-1, and it beomes

1 or -1 for all 100 candidates of a

- Probability $1 / 2^{100}$

