
Design & Analysis of
Information Systems

Mathematics in Computer Science.
This year’s topic is

Computational Geometry.

Mathematics in computer science

• Mathematics seeks for elegant solutions
– “Solution” is not just “showing the answer”.
– It is important to describe the solution process.

• Computer science seeks for elegant and
efficient algorithms
– Algorithm: Concrete description of process.
– Algorithms lead to our modern life.

• Mathematics is vital in algorithm design
– Solve seemingly-impossible tasks.

Computational Geometry
• Design algorithms for geometric problems

– Many modern applications
• GIS, Graphics, Geometric Modeling, Robotics,

Multidimensional Database, Computer Vision.
– Fast processing of massive data

• Giga pixel data = 1000,000,000 data in a single
digital picture

• Elegant geometry for algorithm design
– Discrete geometry, etc.
– Exciting intellectual puzzles (知的パズル）

Diverse elevation point data: density,
distribution, accuracy

1974

20011999

1995
Lidar 0.15m v. accuracy; altitude 700m and 2300m

Photogrammetry 0.76m v. accuracy (5ft contours)

2004

1998
RTK-GPS 0.10m v. accuracy

Example of geometric computation
• Convex hull computation (凸包の計算）

– A showcase of algorithmic techniques
• Given a set S of n points in a plane,

compute its convex hull
– Convex set: A set X such that for any two

points p and q in X, the segment pq is in X
– Convex hull CH(S) of S : Minimum convex set

containing S
• Question: Is convex hull well-defined (i.e., always

uniquely exists) ?

Convex Sets ?

Convex set containing S

Convex hull of S

Every convex set containing S
must also contain CH(S)

Convex hull exists

I
SXconvexX

XSCH
⊃

=
,:

)(

• Nice mathematical representation.

• But it is hard to use in computation.

Convex Hull Computation

• Given a set S of n points, compute CH(S)
• Can you design an algorithm?

I
SXconvexX

XSCH
⊃

=
,:

)(

Very nuisance formula. The right hand side is
intersection of infinite number of convex sets

We should transform this “cold” formula into
more “friendly” one.

Characterization.
1. CH(S) is a convex polygon
2. Vertices of CH(S) are points of S
3. CH(S) contains all points of S

Homework: Prove it!

A representation of CH(S):
the list of vertices in a clockwise order

starting from the leftmost one

p1

p9

p6

p3

p4

p2

p10
p7

p5

p12

p11

p13

p8

p14

Question: Show CH(S) of the above picture
in the above representation.

Now, the problem is in the
discrete and finite world

p1

p9

p6

p3

p4

p2

p10
p7

p5

p12

p11

p13

p8

p14

Find the (partial) permutation of S forming
the convex hull.

Verification problem

p1

p9

p6

p3

p4

p2

p10
p7

p5

p12

p11

p13

p8

p14

Given a list (p1, p2,p10,p12,p9,p4), verify
whether it is CH(S).

Verification problem 1

p1

p9

p6

p3

p4

p2

p10
p7

p5

p12

p11

p13

p8

p14

Given a list (p1, p2,p10,p12,p9,p4), verify
whether it gives a convex polygon

Verification problem 2

p1

p9

p6

p3

p4

p2

p10
p7

p5

p12

p11

p13

p8

p14

If the list (p1, p2,p10,p12,p9,p4) gives a
convex polygon, show all other points are
contained in it.

A brute-force algorithm

• Algorithm 1:
– Generate all possible partial permutations of S
– For each permutation P, verify it gives CH(S)

• Questions
– Is the above algorithm always correct?
– How much time does it take if n= 1000.

• Conclusion: We need a better algorithm.
• Question: Please consider a better

algorithm than this!

Analysis of Algorithm
• Time Complexity

– Given an input of size n (words/bits), how many basic
steps are required in an algorithm?

• Arithmetic operations
• Comparisons, Data Access (read, write)
• Floor/Ceiling [314,1592] = 314

– T(n): number of basic steps
– Asymptotic time complexity

• T(n) < c f(n) for a suitable constant c and a familiar function f(n)
• We write T(n) =O(f(n))

• Classification of time complexity
– Polynomial time algorithm: f(n) is a polynomial in n

• Linear time algorithm: T(n) = O(n)
• Quadratic time algorthm: T(n) = O(n2)

– Exponential time algorithm : e.g., f(n) = 2 n

– Unbounded time algorithm : No such f(n)

Complexity of a problem
• Complexity of a problem X

– The complexity of X is O(f(n)) if there is an
algorithm to solve X in O(f(n)) time

– The complexity of X is Ω(f(n)) if there is no
algorithm to solve X in o(f(n)) time

• o(f(n)): strictly smaller than O(f(n))
– The complexity of X is Θ（ｆ（n)) if it is both O(f(n))

and Ω(f(n))
• Complexity class of a problem

– A problem X is in class P if there is a polynomial
time algorithm to solve X, that is, the complexity
of X = O(f(n)) for a polynomial f(n).

Typical problems in class P
• Finding maximum element in a given set of n

numbers : Θ(n) time
• Sorting n numbers: O(n log n) time

– Θ(n log n) if we restrict the computation model
• Computing the “distance” of two DNA sequences

of length n: O(n2) time
• Computing convex hull of n points in the plane

– How to do it? What is the time complexity?

Edge verification

p1

p9

p6

p3

p4

p2

p10
p7

p5

p12

p11

p13

p8

p14

(p4, p9) is an edge of the convex hull, while
(p3,p10) is not. How to distinguish them?

Edge
verification

p1

p9

p6

p3

p4

p2

p10
p7

p5

p12

p11

p13

p8

p14

•Order all points in the orthogonal direction to
the edge we want to verify

• Convex hull edge if and only if its endpoints
are both maximum (or minimum) in the ordering

Convex hull
algorithm

using
edge

verification

p1

p9

p6

p3

p4

p2

p10
p7

p5

p12

p11

p13

p8

p14

•Verify all n(n-1)/2 candidate edges

•Collect all the convex hull edges

•Arrange them into convex hull

• How to do it?

Time
complexity

of the
algorithm

using
edge

verification

p1

p9

p6

p3

p4

p2

p10
p7

p5

p12

p11

p13

p8

p14

• O(n3) time algorithm

•Edge verification = O(n) time for each candidate

• O(n2) candidate edges

• Polynomial time. But very slow! How to improve?

Learn from
our real life

p1

p9

p6

p3

p4

p2

p10
p7

p5

p12

p11

p13

p8

p14

• Consider points as pins on a board. (パチンコ台の
釘だと思おう）

• You are given a string. How to realize the convex
hull. (紐を使って凸包を計算しよう）

• “Gift wrapping” algorithm or………

Another method
learning from our
real life

p1

p9

p6

p3

p4

p2

p10
p7

p5

p12

p11

p13

p8

p14

• Consider points as pins on a board.

• You can touch from any given direction by hand.
How to realize the convex hull.

• “hand probing” algorithm

Algorithmic paradigms
1. Divide and conquer

p1

p9

p6

p3

p4

p2

p10
p7

p5

p12

p11

p13

p8

p14

• Process “left half” and “right half” independently

• Merge two outputs

Algorithmic paradigms
2. Incremental method

p1

p9

p6

p3

p4

p2

p10
p7

p5

p12

p11

p13

p8

p14

• Process points left-to-right

• Start from the triangle formed by p1,p2,p3, and
add points one by one updating the convex hull

Algorithmic paradigms
3. Prune by preprocessing

p1

p9

p6

p3

p4

p2

p10
p7

p5

p12

p11

p13

p8

p14

• Remove all points in the pink quadrangle

• Run an algorithm discussed before

Time complexities of algorithms

• Brute-force:
• Edge verification:
• Gift wrapping:
• Probing:
• Divide & Conquer:
• Left to right incremental:
• Pruning + Gift wrapping

Applications

• Classical use of convex hulls
– Diameter computation

• Rotating caliper
– Fast collision detection

• Tokuyama’s original use of convex hull
algorithms
– Statistics
– Data mining (!)
– Image processing (!!)

	Design & Analysis of Information Systems　
	Mathematics in computer science
	Computational Geometry
	スライド番号 4
	Example of geometric computation
	Convex Sets ?
	Convex set containing S
	Convex hull of S
	Every convex set containing S must also contain CH(S)
	Convex hull exists
	Convex Hull Computation
	Characterization.�1. CH(S) is a convex polygon�2. Vertices of CH(S) are points of S �3. CH(S) contains all points of S
	A representation of CH(S):　�the list of vertices in a clockwise order starting from the leftmost one
	Now, the problem is in the� discrete and finite world
	Verification problem
	Verification problem 1
	Verification problem 2
	A brute-force algorithm
	Analysis of Algorithm
	Complexity of a problem
	Typical problems in class P
	Edge verification
	Edge verification
	Convex hull algorithm using �edge verification
	Time complexity of the algorithm using �edge verification
	Learn from our real life �　
	Another method learning from our real life �　
	�Algorithmic paradigms�1. Divide and conquer��　
	�Algorithmic paradigms�2. Incremental method��　
	�Algorithmic paradigms�3. Prune by preprocessing��　
	Time complexities of algorithms
	Applications

