## Maximum subarray problem:

| 2 |  | 3 | 2 | 1 | -1 | 3 | -3 | 1 | -2 | 1 |  | 2 | -3 | 1 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |

Given an array A of length $n$, consider $\mathrm{A}[\mathrm{s}, \mathrm{t}]=\Sigma_{\mathrm{s} \leqq \mathrm{j} \leqq \mathrm{t}} \mathrm{A}[\mathrm{j}]$.

Problem: Find the indices $s$ and $t$ maximizing $\mathrm{A}[\mathrm{s}, \mathrm{t}]$

## Maximum weight region

Maximum weight region problem: Given a function $f^{*}(p)$ on $G$, find the region $R$ in the region family $F$ maximizing $f^{*}(\mathrm{R})$
Easy to solve if $F$ is the family of $\quad \mathbf{X}$-monoton - x-monotone regions

Really easy ?? If you are a professional, you should find a professional solution.

## Magic of Algorithms is

the heart of programming and system design
Programming Pearls: Famous column in the magazine CACM ( Communications of ACM ), author: John Bentley

Bentley's forewards
I am pleased to announce the inauguration of Programming Pearls, a new department of Communications devoted to the seemingly small things that distinguish great programs from other programs.

## Programming Pearls, 1984, 9月 <br> "Algorithm Design Techniques"

Find the interval maximizing the sum of entries in an array

Maximum subarray problem:



- U. Grenander (Reseacher in computer graphics )
- Find the rectangular region maximizing the entry sum
- Start with one-dimensional problem
-Tip: Simplify the problem
- Naïve method $O\left(\mathrm{n}^{3}\right)$
- $\mathrm{n}^{2}$ intervals, each interval has n entries
- Grenander solved in $\mathrm{O}\left(\mathrm{n}^{2}\right)$ time
- Ask theory seminar of Bentley for a better method
-Tip : Talk with people with other expertise


## Michael Shamos thought overnight, and

## A (I) : entry sum of an interval I

Define $\mathrm{P}(\mathrm{J})=\mathrm{Max}_{\mathrm{I} \subseteq \mathrm{J}} \mathrm{A}(\mathrm{I})$
We can compute the following
$L([s, t])=\operatorname{Max}_{j \in[\mathrm{~s}, \mathrm{t}]} \mathrm{A}([1, j])$,
$R([\mathrm{~s}, \mathrm{t}])=\operatorname{Max}{ }_{\mathrm{j} \in[\mathrm{s}, \mathrm{t}]} \mathrm{A}([\mathrm{j}, \mathrm{t}])$
Divide the inteval J into J 1 and J 2 at the middle, then

$$
\begin{aligned}
& \mathrm{P}(\mathrm{~J})=\max \left\{\mathrm{P}\left(\mathrm{~J}_{1}\right), \mathrm{P}\left(\mathrm{~J}_{2}\right), \mathrm{R}\left(\mathrm{~J}_{1}\right)+\mathrm{L}\left(\mathrm{~J}_{2}\right)\right\} \\
&
\end{aligned}
$$

## Jay Kadane's DP Algorithm

I (max, k) : Max interval to the left of k


J (max, k ) : Max interval whose right end is k

| 2 | -3 | 2 | 1 | -1 | 3 | -3 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |

Lemma:
$\cdot \mathrm{I}(\max , \mathrm{k})=\operatorname{Max}\{\mathrm{I}(\max , \mathrm{k}-1), \mathrm{J}(\max , \mathrm{k})\}$
$\cdot \mathrm{J}(\max , \mathrm{k})=\operatorname{Max}\{\mathrm{J}(\max , \mathrm{k}-1)+\mathrm{A}(\mathrm{k}), \mathrm{A}(\mathrm{k})\}$
Dynamic Programming procedure runs in linear time

## This is not the end of story, just the start

Bentley's open problem: "Solve 2-d problem efficiently"

- $\mathrm{O}\left(\mathrm{n}^{3}\right)$ (Answers by readers in the next issue of CACM)
-Steve Mahaney, E.W. Dijkstra ,etc 14 solvers
- Better one? Open Problem

Challenge this problem??

- Not solved in Bentley's seminar?

- No progress for 15 years, but still ?
- You need idea, timing, and luck
- Tip: If you are interested, think seriously for a week

One day, you may find a solution (1998, Tamaki and T.)

## One day, suddenly you find your luck.

M : Could I discuss on my research topic?
T: Of course, I am happy to listen
M : I want to design data mining system of numeric data base, and badly need efficient algorithms?

T: What? What is "data mining" ?
M: This is my problem.....
T: Yes, this is similar to Bentley's problem. Well, I can solve it, and give details by tomorrow.

## Actor: Dr. Morishita, working on database applications

Tip, You should happily accept requests of your friends, and answer as quickly as possible.

## Numeric Association Rule

- $100>\mathrm{t}[\mathrm{BP}]>50 \rightarrow \quad$ Diseased $=$ no
$\cdot 100<\mathrm{t}[\mathrm{HEIGHT}]-\mathrm{t}[\mathrm{WEIGHT}]<130 \rightarrow \quad$ Diseased $=$ no

|  | conditional attributes |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| AGE | $B P$ | HEIGHT | WEIGHT | $\ldots$ | $\overbrace{\text { Diseased }}^{\text {target attribute }}$ |  |
| 23 | 140 | 168 | 79 | $\ldots$ | Yes |  |
| 21 | 91 | 176 | 61 | $\ldots$ | No |  |
| 42 | 129 | 165 | 80 | $\ldots$ | Yes |  |
| 30 | 98 | 182 | 57 | $\ldots$ | No |  |
| $\ldots$ | $\ldots$ | $\ldots$ | $\ldots$ | $\ldots$ | $\ldots$ |  |

## Association Rules for Numeric Data

Rules that have the form: $\quad\left(A \in\left[x_{1}, x_{2}\right]\right) \Rightarrow B$

Input: Data base with two attributes A and B . Attribute A is numeric and B is binary (yes or no)

Output: A range $\mathrm{I}=\left[\mathrm{x}_{1}, \mathrm{x}_{2}\right]$ of attribute value of A
Support: The ratio of data whose A-value is in I
Confidence: Probability that $\mathrm{B}=1$ under the condition that A is in I

## Optimized Numeric Association Rules

$$
\left(A \in\left[x_{1}, x_{2}\right]\right) \Rightarrow B
$$

We call a rule

- Well-supported if support $\geq$ minsup threshold.
- Confident if confidence $\geq$ minconf threshold.

Two types of optimized rules:

- Optimized confidence rule : a well-supported rules that maximizes the confidence.
- Optimized support rule : a confident rule that maximizes the support.


## Optimized support rule

## Maximize $\mathrm{A}(\mathrm{I})$ under the condition $\left(\mathrm{A}^{\wedge} \mathrm{B}\right)(\mathrm{I})>\alpha \mathrm{A}(\mathrm{I})$

| A | 20 | 32 | 32 | 32 | 34 | 32 | 34 | 32 | 32 | 32 | 32 | 32 | 30 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{A}^{\wedge} \mathrm{B}$ | 12 | 14 | 15 | 11 | 21 | 19 | 16 | 15 | 15 | 17 | 13 | 18 | 8 |
| $\mathrm{C}=\mathrm{A}^{\wedge} \mathrm{B}-0.5 \mathrm{~A}$ | 2 | -2 | -1 | -5 | 4 | 3 | -1 | -1 | -1 | 1 | -3 | 2 | -7 |

Computed in linear time. How to do it???
Geometric view is helpful.

## Optimal confidence rule

| A | 21 | 32 |  | 23 | 31 | 34 |  | 33 | 31 | 22 | 31 | 32 | 33 | 21 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{A}^{\wedge} \mathrm{B}$ | 12 | 14 |  | 20 | 11 | 11 | 9 | 11 | 31 | 12 | 27 | 22 | 23 |  |

## Condition: $A(I)>\beta \quad$ (min-sup) Maximize $\mathrm{A}^{\wedge} \mathrm{B}(\mathrm{I}) / \mathrm{A}(\mathrm{I})$

## Use convex hull algorithm

Surprising, isn't it?

## Transformation into a geometric problem

- Generation of sequences of points
$Q_{m}=\left(A\left([1, m], A^{\wedge} B([1, m])\right) \quad\right.$ Prefix sums
$Q_{s}-Q_{t}=\left(\mathrm{A}((s, t]), A^{\wedge} B((s, t])\right)$



## Convex hull again!



The tangent of $Q_{s}$ and the corresponding upper convex hull for some $s$ gives the range of the optimized confidence rule.

## Computing Tangents (1)

Compute tangents from left to right.


The tangent of $Q_{S}$ cannot have larger slope than $L$. Leave $L$ untouched.

## Computing Tangents (2)

When $Q_{S}$ is below the previous tangent $L$.

When $L$ does not touch the convex hull:


When $L$ still touches the convex hull:


## Algorithm

-Compute the Convex Hull Tree
-Compute tangent lines, moving the anchor point from left to right.
-Update the tangent points
-Walk on Convex Hull Tree

- Linear time algorithm

