情報基礎B（Computer Literacy） Lecture 1：Course Overview

Matias Korman

Tohoku University Graduate School of Information Sciences
System Information Sciences
Design and Analysis of Information Systems

About me

- Matias Korman
- Assistant Professor, Graduate School of Information Sciences
- http://www.dais.is.tohoku.ac.jp/~mati/
- Bonus! Find these slides there!
- mati@dais.is.tohoku.ac.jp
- Course taught in English
- Also speak inCatalan, Spanish, French, Italian, Japanese
- Profile
- First time to Japan in 2003
- Studied in Tohoku University (06-09)
- In 2015 returned to Sendai
- Research in theoretical computer science

Teaching Assistants

- Quentin Labernia
- English
- French
- Some German
- quentin@dais.is.tohoku.ac.jp
- Aji Kasmaji
- English
- Indonesian
- ajiajikasmaji@gmail.com

Slides by Jinhee Chun

- Translated into English by Takeshi Tokuyama
- Further edited by me

Course Overview

- Contents
- Basic knowledge on information technology
- Usage of computer
- Ofimatic software
- The Internet
- Programming
- Information society and information ethics
- Basic usage of a computer (today's goal)
- Learn the potential of a computer
- Evaluation
- Assignments (and Attendance)

MultiMedia Building

- ICL rooms are open except during lectures
- ICL1 8:50-17:50 Linux/Windows*152
- ICL2 8:50-20:45 Linux/Windows*152
- ICL3 8:50-17:50 Linux/Windows*55, MacOS*2
- ICL4 8:50-20:45 MacOS*20

MultiMedia Building

- Technical Assistants are available for your question
- 09:00-17:50 Assistant room(red circle below)
- 18:00-20:45 ICL2,3

Computer system in Campus

- Operating System
- Windows

You know all of this

- Secure

- Attention!
- Computers are powerful tools
- Can also be harmful
- Handle with ethics and responsibility

Basic Usage of Windows

- Desktop environment
- Mouse operation
- Application startup
- Application example
- Command prompt: programming
- Text editor: Word
- Spreadsheet: Excel
- Presentation: PowerPoint
- Internet Browser: Fire Fox, Chrome, Tor

Don't use Microsoft explorer

Linux

- Common Desktop Environment(CDE)
- Visual environment (windows-like)
- More powerful via command line
- Application examples
- Terminal: command line operation, programming
- Text editor: K write
- Mailer
- Intornot hrnisicar

TDLR: More complicated and powerful

Login

You know all of this

- Turn on machine and display
- Select an OS(Linux or Windows)
- Enter your user ID and password

User ID and Initial Password

- User ID
- Allocated by system administrator
- Two different IDs
- Tohoku University ID
- Student ID
- Password
- Decided by user
- NEVER share
- Initial Password
- Given by system administrator
- Generated from your personal information
- Change immediately

1 利用者番号と初期パスワードについて
教育用電子訃算機システムを利用するためには，利用者番另と初期パスワードが必要です。
（例）
学籍番号：A9JB1234 生年月日：1990年1月1日
名前：徳山（トクヤマ）出身高校所在地：東京
－利用者番号には，学籍番号（アルフアバットは小文字）を利用します。

利用者番号は［a9jb1234］

－初期パスワード㭕，各自，手計算により算出します。算出方汰は，表面在參照して下さい。

初期パスワードの算出

（例）
 学籍番号：A9JB1234
 名前：德山（トクヤマ）
 生年月日：1990年1月1日
 出身高校所在地：東京

表2．

\＃－			128		108
Of	8785	可鸟責	3	大陏府	4
0		聿家显	E	成厚	3
US	＋7\％15	会乎昜	c	根星買	\bigcirc
04		Suta	d	\％ 5 ［／4	2
（6）	汗平袆		a	自入复	F
06	豆都	山形賭	1	樶采	F
07	品7部	780男	9		G
［48）	Yatis		F		1
49	工韦晾		1	山口晨	1
10	晨部		j	E最里	1
\＄1	又豆研䆖材	速王相	k	会川摬	＜
\％2		平整鼻	I	5梅量	1
3		为宁新	π	或1厚	4
24		700宗11畐	n	［1971	4
退	179378\％1		0	空省屓	2
26			E	旦㟴量	3
77		五川悬	9	91車量	2
38	K78481才	校侓晨	f	夷边最	२
29			8	8退量	5
58			t		\％
41		齿鼻竟	1.	（4）2	1
42		本同采	v	E0才囱	
43		家扣界	\cdots		\checkmark
44			\times		
45		造悬	y	人干\％\％圭	
50			z		

初期パスワードの算出

（ ${ }^{\text {（例）}}$ 学籍番号：A9JB1234名前：德山（トクヤマ）

生年月日：1990年1月1日出身高校所在地：東京

初期パスワードの算出

名前：徳山（トクヤマ）

生年月日：1990年1月1日出身高校所在地：東京

Initial Password

Anyone can generate from your basic information. Leaving initial password can cause ACOUNT HACKING

Change it NOW at "Integrated Electronic Authentication System Login" in CITE website

Compliance

Be specially careful when using university computers

- No online purchases
- No movie downloading
- Don't send missiles to North Korea
- Don't print counterfeit money

> You know all of this

Course Registration

- Open your Internet Browser
- Go to "Teaching Support System" in CITE website
- Login and click course registration
- Only registered user can use PC in a course (otherwise forced to logout)

> This registration is only valid in Multi Media Building and not related to grading system.

Homework

- Prepare a 5 minute presentation
- Tnnic: Information Societv and Fthics

Important! Counts for final grade!

- Give your opinion
- Possible solutions
- Make slides in (preferably PDF)
- Deadline: 16 October

情報基礎B（Computer Literacy）
 Lecture 2：Ethics and Security

Matias Korman

Tohoku University Graduate School of Information Sciences
System Information Sciences
Design and Analysis of Information Systems

Course Overview

- Acquisition of basic knowledge on Information Technology and Information Science
- Netiquette - Intellectual Property Right \& Laws -(Security)

Course Information

- Mostly Slides
- Exercises done in class
- Classic textbook
- Internet
- Handouts

Print out limitation is 120 Pages/ Semester

Information Ethics

－Ethics
－Right attitude as a human in society

Do not harm others

（Justice）•不L（Politeness）－替（Wisdom）－信（Honesty）
－Information Ethics

Do not harm others using computers

Not even by accident！

Information in Society

- Humanity has evolved along with information
- Major evolutions
- Language
- Paper+Pen
- Printing
- (physical) mail
- Telegram
- Telephone
- ...
- Internet
- Email, Web, Blog, Twitter, Facebook
- Human culture depends on information infrastructure and information exchange

Information in Society

- Humanity has evolved along with information
- Major evolutions
- Language
- Paper+Pen
- Printing
- (physical) mail
- Telegram
- Telephone
- ...
- Internet
- Email, Web, Blog, Twitter, Facebook
- Human culture depends on information infrastructure and information exchange

Benefits and Risks of the Internet

- Benefit
- World wide scale
- Lots of information available
- Easy to publish and share
- Make distances shorter
- Each person takes part in a huge events
- Facing unspecified large number of people
- Risk
- Individual act leads to a large effect
- Many malicious uses
- Small mistakes have big impact
- With great power comes great responsibility
- Use internet wisely

Is this new?

- First documented case is in December 1941
- Pearl Harbor
- Japanese destroyed eight battleships
- High presence in media
- "Forced" US to join WWII
- Now happens in a larger scale
- Russia interference in US election
- Police tweeted "about to raid a terrorist cell"
-Clickbait news
- Need to be "first"
- Everyone can access a large audience easily
- Everyone should study information ethics!

What can we do?

- LEARN
- Do not believe any news you see
- Numbers can be easily tweaked
- Small mistakes have big impact
- Try to contrast the news
- Be mindful of "schauenfreude"
- Do not share if you are not certain
- Most people only read caption
- With great power comes great responsibility
- Use internet wisely

Crimes one may commit

- Violation of Privacy
-Stronger than freedom of speech
- Disclosing a private life of others (tweet the location of a famous person)
- Defamation
-Blaming, Discrimination
(you could go to jail for trolling!)
- Piracy
-Using information from others without permission
- Putting your photo of a celebrity
- Your computer used as spambot
- Gambling, trickery, pyramid selling
- Your loss fuels loss for others

Illegal acts we ALL do daily

- Registering in some website with a fake name
- 5 to 20 years!
- Using an open wi-fi without consent
- Open does not mean "please use"
- Posting someone else's image
- Giving credit is not enough
- Sharing password with family
- My wife cannot benefit from my Netflix!
- Registering with a fake name
- 5 to 20 years!
- Selling on eBay
- Did you declare taxes?

Law point of view

- Prohibited by law
- Human rights violation (right to privacy, to be forgotten, etc)
- Easier than regular crimes
- You do not see anyone suffer
- Easy to anonymize
- Unconscious misconduct
- Lack of awareness is your fault
- Unethical acts should be avoided

Don't hack your professor's PC!

How to make a good password?

WINDOWS: Please enter your new password.
USER: cabbage
WINDOWS: Sorry, the password must be more than 8 characters. USER: boiled cabbage

WINDOWS: Sorry, the password must contain 1 numerical character. USER: 1 boiled cabbage

WINDOWS: Sorry, the password cannot have blank spaces.
USER: 50boiledcabbages
WINDOWS: Sorry, the password must contain at least one upper case character. USER: 50FUCKINGboiledcabbages

Internet Security

- Having a strong password is essential
- Letters and numbers
- Special characters
- Blood type
- Hair color
- Long password do not make your account safer!
- Do not use the same password in different pages
- Use an algorithm
- Even better: password manager

Is this enough?

Internet Security

Microsoft * Windows 7 : Security Vulnerabilities

Cop. Porulty Downlsed Roaults

4 CUE 2013 E6E 22
1 DOE Cir. Tros.
$20130525 \quad 25130505 \quad 4.9$ Nanะ
Lses Low
Not required Norc herg Comaste

 a crafted FATHRECURD chan.

ath asperased welues tormat

Internet Security

- Security does not depend only on you
- Even with Firewall and Anti-virus
- Day 0-vulnerabilities can affect any computer
- Sell for 200.000\$ on black market
- Update all software!
- NSA spying on all of us
- How much data do you have online?
- One disgruntled employee is all it takes
- Most nuclear power plants are infected
- Not even aware of them

Security Example 1

- While browsing through internet I saw an add Your computer is infected, try our antivirus for free!
- Install the program and computer slows down
- Pay for the pro version and no more problems!

Malware (Malicious Software)

- Malware
- Old ones would destroy your data - Possibly ask for ransom money
- New ones give your information
- How to get infected
- USB
- Plug \& play devices
- Internet
- Downloaded file
- E-mail attachment
- Logging to "Free_wifi" network
- Man in the middle

- Hard Drive swap
- Software vulnerabilities
always update software!

What can they do?

- Steal your money
- They probably don't care
- Your account is payment for other transactions
- Steal your information
- friends are potential targets
- Destroy data, ask for ransom money
- WannaCry, Pirates of the Caribbean 5
- Blackmail
- Do you want your drunk images on Facebook?
- Have you ever cheated on your boyfriend/girlfriend/dog?
- Become figurehead for larger crimes
- Identity theft
- Someone could do this course instead of you!

Security Example 2

- Google workers in China use new laptops
- Use computer as little as possible
- Never type passwords with keyboard
- Use USB authentication
- Shower with USB
- Throw computer when returning home
- Aren't virus only programs?

How much security do you need?

Security Example 3

- Why was Bin Laden hard to find?
- He never accessed internet
- carry a USB key to internet cafe
- 30 Drive each way

Not practical for us. Make it not worth the effort!

Self Defense Summary

- Very hard/impossible to be secure
- Make it not worth for hackers
- Never stop learning
- National Police Agency Japan Countermeasure against Cybercrime
-http://www.npa.go.jp/cyber/english/ index.html
- National Consumer Affairs Center of Japan
-http://www.kokusen.go.jp/ ncac_index_e.html

Spam Mail

- 97\% of all mail is unwanted
- Most of it are adds
- 99.99999% of them end in spam folder
- 46\% of people open them
- 11% of them click
- ??\% end up in a purchase
- Millions of dollars in benefits!!
- Imagine how fast would internet can be?
- Never support them!

Data Privacy

Or why is Facebook free?

Privacy in Social Networks

Frank
Since Facebook is now an open capital entity and in response to the new Facebook guidelines, 1, , hereby declare that my copyright is attached to all of my personal details, including but not limited to 'llustrations, designs, paintings, renderings, professional photos, business photo's and videos, etc. (as a result of the Berner Convention).

For commercial use of the above my written consent is needed at all times.

I notify Facebook that it is strictly forbidden to disclose, copy, distribute, disseminate, or take any other action against me on the basis of this profile and/or its contents. The aforementioned prohibited actions also apply to employees, students, agents and/or any staff under Facebook's pay, direction or control. The content of this profile is private and confidential information. The violation of my privacy is punished by law (UCC 1 1-308-308 1103 and the Rome Statute). 11/25/12

Why are Social Networks Free?

- Sell Ads
- Targeted to specific audience
- They learn a lot from you
- What did you click?
- Whose page do you stalk?
- Several known abuses
- Selling information on you being sick
- Sharing that you are homosexual
- How much would a paid SN cost?

Other problems of SN

- Most people get news from social networks
- Friends share news, more likely to believe
- Friends think alike -> reinforce your opinion
- Fake news (more than 50\%?)
- Obama's war chest came from social media
- Russia influenced the US election through ads on Facebook
- People share explicit images during terrorist attacks
- Sharing pictures of your ex-boyfriend/girlfriend

How can we be protected?

- Understand that anything you upload will become public
- Even if sent privately
- Think before you share
- Tweak settings for extra privacy
- Remove metadata of images
- Close old accounts

Further Study

- Movie/TV
- Fifth Estate
- Snowden
- Black Mirror
- Mr Robot
- Bruce Schneier blog on security (https:// www.schneier.com/)
- Essays on Social Sciences (nerdwriter1)

Remember the homework!

- Prepare a 5 minute presentation
- Topic: anything related to what I spoke
- i.e., internet bullying
- Introduce the problem
- Give your opinion
- Possible solutions
- Make slides (PDF)
- Deadline: 16 October

情報基礎B（Computer Literacy） Lecture 3：History of Computers

Matias Korman

Tohoku University Graduate School of Information Sciences
System Information Sciences
Design and Analysis of Information Systems

History of Computers

- Computer
- A machine that carries out arithmetic and logical operation
- Anything from calculator to supercomputers

Early Computers

- Pascalina by Blaise Pascal (1640?)
- Charles Babbage(1822) programmable
- ABC by Atanasoff-Berry (1942) electronic

http://www.infonet.co.jp/ueyama/ip/history/eniac.html (Japanese)

More ancient history

- George Boole (1815-1864): Boolean Algebra
- Alan Turing(1912-1954): Turing machine: Basic idea of logical process by a computer - Church-Turing thesis: Computable functions
- First tangible benefit of computers
- John Von Neumann (1903-1957)
- Added "computer program" (stored program)
- Claude Shannon(1916-2001)
- Information theory

Boolean algebra and computing

- Boolean algebra: Algebra on 0 and 1 $-0 \oplus 0=0,0 \oplus 1=1 \oplus 0=1,1 \oplus 1=1$ (AND operation) $-0 \otimes 0=0,0 \otimes 1=1 \otimes 0=0,1 \otimes 1=1$ (OR operation) $-\operatorname{NOT}(0)=1, \operatorname{NOT}(1)=0 \quad$ (NOT operation)
- Every computation can be represented
- Easy to implement electronically
- Relay, transistor, etc
- Information coding (Shannon) : Transform information into sequences of 0 s and 1 s

The first "proper" computer

- ENIAC (Electronic Numerical Integrator and Computer)
- First universal computer
- Invented by John William Mauchly and John Presper Eckert in 1942

http://www.infonet.co.jp/ueyama/ip/history/eniac.html (Japanese)

Fun facts about ENIAC

- Floor area: 100m², Length: 30m, Weight: 30t, Power Consumption 150kW
- Developed secretly on military purpose such as trajectory calculation and Cryptanalysis
- How fast?

http://www.infonet.co.jp/ueyama/ip/history/eniac.html (Japanese)

Hardware Architecture

- Control Architecture operates those transaction
- Operating System shares those devices

Operating System

- Main program
- Manages and launches other programs
- Also helps with managing files, etc
- History of OS
- MVS/CMS: OS for IBM Mainframe
- Multiple Virtual Storage
- Conversational Monitor System
- System/360(1964) has established Mainframe features
- UNIX: Typical workstation OS
- MS-DOS: De facto standard of OS on early PCs
- Windows, MacOS: Main OS on current ones
- LINUX: UNIX for PC
- Android/iOS for smartphones

Files and Folders

- File
- A block of information
- Document
- Program
- Image (a picture from a digital camera)
- Audio (ex: a song in CD)
- Movie
- etc
- tThe size (amount of storage needed) is measured in Bytes
- KiloByte (1000), MegaByte, TeraByte ... etc

Folders

- Folder ("Directory" in Linux)
- A virtual container to group files and other folders
- ex)
- Music folder which contains audio files
- "My Documents" or "Home Directory" in your account at Tohoku University
- Common file system in almost all operating systems

File Structure

Why tree structures?

- Tree structure is needed to handle large data
- I have more than 1000,000 files in my own PC
- We have more than $1000,000,000$ web pages in the world
- How to organize them?? Tree is the solution.
- www.dais.is.tohoku.ac.jp/~tokuyama/profile.htm
- By using a tree with 6 layers with 20 branches at each node, how many information can be represented?

What is file name?

- File name consists of name and extension - Doc1.txt
- Extension is a type of file
- Some applications use their own extensions
- mytext.txt (text file)
- mydocument.doc (MS Word 97-2003 document file)
- mydocument.docx (MS Word 2007-document file)
- myweb.html (html file: for web design)
- mypicture.jpg (picture file)

Basic File Operations

- Open "MyDocument" from icon
- Create folders below
- practice
- assignment
- handout
- Move files from folder to another folder
- Create file and copy them

COMPUTER BASICS II INTERNET

Internet

- Big network connecting many computers
- Networks in home, office and School reach the internet through a provider.

Internet

- History of the Internet
- 1970s: Development on packet communication and TCP/

IP(Transmission Control Protocol / Internet Protocol)

- 1980s: ARPANET(Pentagon and UC Berkley)
- Academic, Military, Aviation, Space Development
- IBM VNET: Corporate network
- 1990s: Practical Internet based on e-mail
- Alternative communication method to mail and phone
- For hearing-impaired person (MCI VIntonCerf)
- 1990s latter half: www(world wide web)
- one-to-many multimedia information service on web page
- Development exceeding TV
- 2000s: smartphones

Internet

- WWW(World Wide Web)
- Multicasting information service
- Open to everybody: one-to-many
- User select information he/she needs
- We use search engines to find information
- i.e. google
- Links between texts with Hypertext
- Visualization on Internet Browser
- Other applications (Mail, RSS, svn, etc)

Internet

- IP address(Internet Protocol Address)
- Used identify a machine on network
- Each computer has a different address
- Four numbers separated with dots
- Ex) 192.168.0.1
- Provided by an agency in each country
- JPNIC(Japan Network Information Center)

Internet

- Domain names
- cs.he.tohoku.ac.jp
- http://www.ise.he.tohoku.ac.jp
- Domain name Servers (DNS) convert IPs to names to make it easier to remember
- More robust to webpage failure, split load, ...

E-mail

- System to send messages between people

- MUA(Mail User Agent)
- Mailer
- MTA(Mail Transport Agent)
- Program on mail server
- SMTP(Simple Mail Transport Protocol)

E-mail

- Mail Address
- Consists of user name and domain name
b1xxxxx@cs.he.tohoku.ac.jp
- Domain
- Indicates address of mail server
- Name of university or company
- Easy to find (using "DNS")

情報基礎B（Computer Literacy） Lecture 4：Databases and Spreadsheets

Matias Korman

Tohoku University Graduate School of Information Sciences
System Information Sciences
Design and Analysis of Information Systems

Databases

- Database
- System to store and organize large amount of data
- Need good methods to use (search and extract)
- Address book, Music database, University Library, DNA database, Criminal Records, ...
- Operation
- Data collection
- Database construction
- Data management
- Storing data, search, modify
- Data analysis and understanding
- Major database structures
- Relational Database, Functional Database, XML Database

Database model

Relational database model

Hierarchical database

Network

Relational Databases

- Based on the theory of relational data model proposed by Edgar F. Codd in IBM(1970)
- Each Table contains information of one type (say students, courses)
- Combine information with IDs (i.e., student 24 obtained a C score in course 12)
- SQL (Structured Query Language) used to obtain and modify information

SELECT Math $\geqq 80$ AND English $\geqq 90$ FROM Exam;

Example of Relational Database: Sales Database

Sales: 2010Jan

	Item1	Item2	Item3	Item4	Item5	Item6	Item7	Item8	Item9	Item 10
Hokkaido	136	84	192	102	174	73	51	76	84	105
Aomori	127	122	63	70	35	224	75	246	230	253
Iwate	24	225	120	214	170	142	252	80	253	124
Miyagi	147	62	172	58	218	75	208	224	161	111
Akita	99	221	148	188	140	69	184	78	172	204
Yamagata	143	157	184	105	166	129	78	206	164	189
Fukushima	148	99	105	49	253	63	102	113	163	185
Ibaraki	49	62	240	51	107	223	147	199	107	140
Tochigi	64	159	191	24	120	215	210	249	123	54
Gunma	59	87	131	211	83	249	36	221	263	138
Saitama	92	131	99	193	240	105	184	52	74	144
Chiba	118	58	60	46	245	206	93	240	55	153

	Item1	Item2	Item3	Item4	Item5	Item6	Item7	Item8	Item9	Item 10
Hokkaido	110	218	85	133	25	33	117	111	233	65
Aomori	145	89	31	141	104	217	88	99	36	263
Iwate	126	29	79	70	155	113	144	211	128	236
Miyagi	108	92	263	100	249	134	52	72	208	163
Akita	152	113	33	41	153	48	147	130	79	201
Yamagata	150	93	115	166	120	46	260	77	113	54
Fukushima	206	256	109	60	230	61	157	238	117	82
Ibaraki	220	263	140	250	225	30	246	171	150	25
Tochigi	153	118	57	42	186	197	182	111	85	225
Gunma	237	87	137	129	199	151	128	115	163	214
Saitama	176	58	82	86	268	158	191	234	70	216
Chiba	116	58	175	237	103	72	34	165	37	101

Prices

	Item1	Item2	Item3	Item4	Item5	Item6	Item7	Item8	Item9	Item10
Cost price	874	574	785	250	184	385	456	784	890	458
Selling price	980	870	900	500	354	450	980	800	980	650

Development of Database Technology

Using EXCEL

- Application software of Microsoft
- Data is stored in spreadsheets (idea from the 1960th)
- VisCalc on Apple II (1979) changed the use of PC
- Specialized for data analysis
- Calculation
- Simple calculation
- Math Functions
- Data to graph
- Data collection to Database(small DB)
- Numeric data, character data
- Programming with VBA
- Software programming
- Accounting software, game and etc

Open Excel

Entering Data

- Select a cell and type
- Active cell
- Cell number
- A1, C2
- Column
- A, B, C, D, ...
- Row
- $1,2,3,4, \ldots$
- Sheets separate info
- Sheet index - Sheet1

Entering Data

- Editing is shown in the math bar

Simple Calculation

- Data can be simple or derived
$\begin{array}{ll}\text { - A1 } & 50 \\ \text { - A2 } & 75 \\ \text { - A3 } & 5 \\ \text { - A4 } & 8\end{array}$
$-\mathrm{A} 6=\mathrm{A} 1+\mathrm{A} 2$
-A 7 =A2-A3
- A8 =A3*A4
- A9 =A1/A3
$-\mathrm{A} 10=(\mathrm{A} 1+\mathrm{A} 3)^{*} \mathrm{~A} 4-(\mathrm{A} 2+\mathrm{A} 4) / \mathrm{A} 3$

Other Math Operators

- Sum

$$
\begin{array}{ll}
-\mathrm{E} 1 & =\mathrm{A} 1+\mathrm{A} 2+\mathrm{A} 3+\mathrm{A} 4 \\
-\mathrm{E} 2 & =\operatorname{sum}(\mathrm{A} 1: \mathrm{A} 4)
\end{array}
$$

- Average

$$
\begin{array}{ll}
-\mathrm{E} 3 & =(\mathrm{A} 1+\mathrm{A} 2+\mathrm{A} 3+\mathrm{A} 4) / 4 \\
-\mathrm{E} 4 & =\mathrm{E} 1 / 4 \\
-\mathrm{E} 5 & =\text { average }(\mathrm{A} 1: \mathrm{A} 4)
\end{array}
$$

- Max, Min
$-E 6=\max (\mathrm{A} 1: \mathrm{A} 4)$
- E7 $=\min (A 1: A 4)$

Simple Exercise Grade students

- Create Exam Data
- Items
- ID and 3 courses (Japanese, English, Math)
- 10 students (1, $2, \ldots, 10$)

Or download from my webpage
Let's compute the Average, Total Score and best score of each student!

Sum

	File	Hom	me Insert	t Page	Layout		Formulas	Data	Review	View
SUM			- $\quad \times \checkmark \mathrm{f}_{\boldsymbol{x}}=\mathrm{B} 2+\mathrm{C} 2+\mathrm{D} 2$							
4		A	B	C	[D	E	F	G	H
1	ID		Japanese	English	Math		Sum	Average		
7		1.	98	89		94	=R7+C2	?		
3		2	87	45		68				
4		3	63	86		57				
5		4	89	75		84				

- Enter a formula below

$$
=B 2+C 2+D 2
$$

Average

$$
=(B 2+C 2+D 2) / 3
$$

Beware of cell format!

Copying Cells

	Fiv	H.II	\|n= Inıe	1 Peye L	Layuut		Furn ules	Dale	Rexisw	
		E2		(-		-82-	C2+02			
4		4	B	c		D	E	F		G
1	0		Jopancse	English	Vath		Sum	Avcrage		
2		1	58	39		54	281	93.6?		
3		2	57	45		88	200	65.6?		
4		3	63	צ6		57	206	6 E .6 ?		
5		4	59	75		54	248	82.6?		
5		5	54	98		S5	287	95.6?		
7		6	100	49		45	194	64.6?		
5		7	88	39		58	225	75.00		
Ξ		8	25	F9		¢8	222	74.00		
10		9	78	צ5		78	241	80.33		
11		10	59	79		25	203	67.67		
12		11	55	78		57	230	75.67		
13		12	18	58		51	200	65.67		
11		13	87	51		35	236	75.67		
15		11	55	58		59	292	97.33		
15		15	78	51		57	219	73.00		
17		16	§5	צ7		57	259	85.33		
18		17	51	78		75	207	65.00		
15		18	59	58		85	252	81.00		
20		19	78	צ5		59	222	7.1.00		
21		20	18	\$7		57	222	7,4,00		
+11n Calcl										
Heady										Averes

Copy/Paste

- Your new best friend
- Formulas are copied and "Translated"
- Use \& To prevent translation

Sum

=sum(Cell range)

=sum(B2:D2)

Cell range: B2 to D2

Average

Other Math Functions

Other Math Functions

情報基礎B

 Lecture 5：Complex formulas

 Lecture 5：Complex formulas}

Matias Korman

Tohoku University Graduate School of Information Sciences
System Information Sciences
Design and Analysis of Information Systems

PLAYING WITH SPREADSHEETS

Comparing data

- Comparison
- A15 =10>3
- B15 $=10<3$
-C15 =(10*2)<3
-D15 =C1>C2
-E16 =C7>E2
- Result is "TRUE" or "FALSE"

Interesting programs?

- Branching
- Action depends on something else
- Implemented with IF function
- IF(criterion, action1, action2)
- Proceed action 1 when the criterion is true, otherwise proceed action2
- =IF(logical_test, value_if_true,

Simple Program

- Operators used in logical tests
$-A=B \quad A$ is equal to B
$-A>B \quad A$ is larger than B
$-A<B \quad A$ is smaller than B
$-A<=B \quad A=B$ or $A<B$
$-A>=B \quad A=B$ or $A>B$
$-A<>B \quad A$ is not equal to B

Simple Program

=IF(logical_test, value_if_true, value_if_false)

$$
\begin{gathered}
=\text { IF(logical_test, 1, 0) } \\
\cdot \text {-A16 }=\operatorname{IF}(A 15,1,0)
\end{gathered}
$$

=IF(logical_test, "string", "string")

-B16 =IF(A15, "True", "False")
-C16 =IF(C1>C2, "Correct", "Wrong")

Grading a student

- D16 $=\mathrm{IF}(\mathrm{A} 1>=80$, "Pass", "Fail")

Exercise 1: Coarse grading

- Use table from last week download from https://goo.gl/Kks4Bh
- Program a grading system on excel which outputs "Pass" or "Fail"
- Pass: if Score of Japanese, English, and Math is more than 80
- Fail: otherwise
- Add "Result" on G1
- Same entry for positions G2 to G21

Branching

Branching

- Three scores by nesting "IF" operations

$$
=1 F(B 2>=90, \quad " A ", \quad \operatorname{F}(B 2>=80, " B ", " O T H E R "))
$$

Do we need to stop at 3 ?

Writing in Excel

- Grade
- A100 > Score >= 90
- B $90>$ Score >= 80
- C $80>$ Score $>=70$
- D $70>$ Score $>=60$
- F 60 > Score

$$
\begin{aligned}
& =\mathrm{IF}(\mathrm{~B} 2>=90, \text { "A", } \\
& \text { IF } \mathrm{B} 2>=80, \text { "B", } \\
& \text { IF }(\mathrm{B} 2>=70, \text { "C", } \\
& \text { IF }(\mathrm{B} 2>=60, \text { "D", }
\end{aligned}
$$

Exercise 2: fine grading

- Make a grading system which outputs "A", "B", "C", "D" or "F" for each Subject oA $100>$ Score $>=90$
oB $\quad 90>$ Score $>=80$
-C $80>$ Score $>=70$
oD $70>$ Score >= 60
oF 60 > Score
- Apply same method to all students
-Add "Japanese", "English" and "Math" header each on G1, H1 and L1

Counting

- How many students got A on Japanese?

=COUNTIF(range, criteria)

=COUNTIF(G2:G21, "A")

Exercise 3: counting

- Count numbers of students that got each grade in each subject

	Japanese	English	Math
A	6	4	5
B	4	7	6
C	3	4	2
D	3	1	2
F	4	4	5

Exercise 3: counting

- Count numbers of students that got each grade in each subject

	Japanese	English	Math
A	6	4	5
B	4	7	6
C	3	4	2
D	3	1	2
F	4	4	5
SUM	20	20	20

- Sanity check: totals in each course

CHARTS

Let's make pretty drawings!

- Bar chart

1. Select data range
2. Click "Chart Wizard"
3. Select a chart type

Chart

- Bar chart

5. Data range is shown. Or enter a range directly

6. Select "Series"
7. Set Category (X) axis labels

Chart

- Bar chart

8. Enter chart title and label for category and value

Many different charts

- Bar Chart

Other Charts

- Pie chart

Japanese

Even more

- Column chart

How many drawings can we have?

- XY (scatter)

情報基礎B（Computer Literacy） Lecture 6：computer language

Matias Korman

Tohoku University Graduate School of Information Sciences
System Information Sciences
Design and Analysis of Information Systems

Computation

- The world of $\{0,1\}$
- Boolean algebra
- Logical operation
- AND operation
$-0 \times 0=0 \times 1=1 \times 0=0,1 \times 1=1$
- Series circuit
- OR operation
$-0+0=0,0+1=1+0=1,1+1=1$

- Parallel circuit
- NOT operation
$-\operatorname{NOT}(0)=1, \operatorname{NOT}(1)=0$

Computation

- AND operation
$-0 \times 0=0 \times 1=1 \times 0=0,1 \times 1=1$
- Series circuit
- Switching : relay, transistor, diode

Computation

- OR operation
$-0+0=0,0+1=1+0=1,1+1=1$
- Parallel circuit

Computation

- NOT operation
$-\operatorname{NOT}(0)=1, \operatorname{NOT}(1)=0$

NOT(a)

Adding two bits

- Circuit to calculate $\mathrm{a}+\mathrm{b}(\mathrm{a}, \mathrm{b}=0$ or 1$)$

Computation Model

- AND, OR, NOT
- Logic operations
- Addition, subtraction, ...
- IF (via comparison)
- Programming model (decision tree model)
- Basic math operations
- Load data from storage
- Move data to storage
- IF operations to branch

Program and Decision Tree

Computation proceeds through the tree

New tool: loop

- SUM(A2:A100)
- Decision tree becomes deep
- Loop structure
- Loop management
- When to stop?
- In Excel...
- By setting range A2:A100

Loop

- Example: SUM(A2:A100)

Programing

1. Think about an algorithm

- e.g. Grading procedure

2. Show a flowchart with decision tree and loop structure
3. Write the algorithm in programming language

- Simple easy vocabulary
- No ambiguities

Programing

- Make operations for computers
- Algorithm design
- Logical thinking needed
- Coding
- Transform idea into "computer language"
- Learning a programming language
- Read programs
- Change/make your own
- Debug (error correction) is crucial

Programing hints

- Learning programming language
- Practice makes perfect
- Follow examples
- This is a pen > This is a dog
- Follow good examples
- Learn from the mistakes
- This is a apple ??
- I is a man ??
- 99.9999% of computer errors are our fault
- System guides in the type of error
- Syntax error (i.e., \#VALUE)
- Guess what is wrong/mistakes
- Logical thinking helps

情報基礎B（Computer Literacy） Lecture 7：If condition with VBA

Matias Korman

Tohoku University Graduate School of Information Sciences
System Information Sciences
Design and Analysis of Information Systems

Variables

- A box used to store information
- Must declare the type first
- e.g. prepare a box "x" to store an integer
- Dim x As Integer
- Declare variable "x" to store integers
- Dim name As String
- Stores text instead
name

Numeric Data types

Data type name	Data	Value range	Size
Byte	Small integer	0 to 255	1 byte
Integer	Integer	$-32,768$ to 32,767	2 byte
Long	Long integer	$-2,147,483,648$ to $2,147,483,647$	4 byte
Single	Short "real" number	$\pm 3.4 \times 1038$ to $\pm 1.4 \times 10-45$	4 byte
Double	Long "real" number	$\pm 1.8 \times 10308$ to $\pm 4.9 \times 10-324$	8 byte

Other Data Types

Data type	Value
Boolean	True, False
String	Text
Date	$100 /$ Jan/1 to 9999/Dec/31
Currency	Larger than Long, 922,337,203,477.5808 to 922,337,203,685,477.5807
Other	$? ? ?$

"IF" in Excel Function

- Branch with "TRUE" or "FALSE"
- IF(logical_test, value_if_true, value_if_false)

Logical formula or Cell number String with "" or just numbers

If - Then - Else in VBA

Action2

If logical_test Then

Action1

Else

Action2

End If

Grading in Excel

- Grading program in previous lecture
- Pass if score is more than 60, fail otherwise
- D16 = IF (A1>=60, "Pass", "Fail")

Grading in VBA

```
Sub seiseki1()
'Grading Program
    Dim score1 As Integer
    Dim name1 As String
    name1 = InputBox("Enter your name.")
    score1 = InputBox("Enter your score.")
    If score1 => 60 Then
    MsgBox "Congratulations!" & name1 & ", You passed the exam."
    Else
    MsgBox name1 & ", You failed the exam."
    End If
End Sub
```


Nesting "IF" conditions

Nesting "IF"s in Excel

- Grade
- A100 > Score >= 90
- B $90>$ Score >= 80
- C $80>$ Score $>=70$
- D $70>$ Score >= 60
- F 60 > Score

$$
\begin{aligned}
& =I F(B 2>=90, \text { "A", } \\
& \text { IF(B2>=80, "B", } \\
& \text { IF(B2>=70, "C", "F"))) } \\
& \text { IF(B2>=60, "D", "F }
\end{aligned}
$$

Nesting "If"s in VBA

If logical_test1 Then
Action1
Elself logical_test2 Then
Action2
Else
Action3
End If

Exercise 1

- Transform this excel formula into a VBA program

$$
\begin{aligned}
& =\mathrm{IF}(\mathrm{~B} 2>=90, \text { "A", } \\
& \text { IF }(\mathrm{B} 2>=80, \text { "B", } \\
& \mathrm{IF}(\mathrm{~B} 2>=70, \text { "C", } \\
& \text { IF(B2>=60, "D", "F")))) }
\end{aligned}
$$

Grading Program If-Then-Else

```
Sub seiseki2()
'Grading Program If-Then-Else
    Dim score As Integer
    Dim name As String
    name = InputBox("Enter your name.")
    score = InputBox("Enter your score.")
    If score >=90 Then
        MsgBox name & ", Your grade is A."
        ElseIf score >=80 Then
        MsgBox name & ", Your grade is B."
    ElseIf score >=70 Then
        MsgBox name & ", Your grade is C."
        ElseIf score >=60 Then
            MsgBox name & ", Your grade is D."
        Else
            MsgBox name & ", Your grade is F."
        End If
End Sub
```


情報基礎B（Computer Literacy） Lecture 8：Arrays and Loops

Matias Korman

Tohoku University Graduate School of Information Sciences
System Information Sciences
Design and Analysis of Information Systems

Array

- Collection of the same data type - Useful for lots of data of same type - i.e., grades per student

Integers

Array of Integer

Declaring Arrays

```
x(1) x(2) x(3) x(4) x(5) x(6)
```


Six boxes to store Integer type variables Box name: x, Index: 0 to 5

$x(5)$: create six boxes named x each of which contains an Integer

Declaring Arrays

$$
\begin{array}{ll}
\text { score }(0)=100 & \text { score }(3)=87 \\
\text { score }(1)=65 & \text { score }(4)=61 \\
\text { score }(2)=76 & \text { score }(5)=99
\end{array}
$$

What if I don't have Id 0 ?

Array Declaration with Index

Array name Index Range Data type

Using arrays in VBA

Looping

- Repeat same operation several times
- i.e., compute average grade of each student - Use a counter to know when to stop
- Counter variable: i

What is I?

Dim i As Integer

Counter name(arbitrary name): i

- What does $\mathbf{i}=\mathbf{j}+1$ mean?
- Store $\mathrm{i}+1$ onto i
- i.e., increment i by 1

1	Sub array3()		
2	Display StudentID and score of all students using a loop		
3	'score: array name, i: counter name		
4	Dim score(5) As Integer		
5	Dim i As Integer	Student ID	Score
6		1	100
7	$\operatorname{score}(0)=100$	2	65
8	score(1) $=65$	3	76
9	score(2) $=76$	4	87
10	score(3) $=87$	5	61
11	score(4) = 61	6	99
12	score(5) = 99		
13			
14	For $\mathrm{i}=0$ To 5 Step 1		
15	MsgBox "StudentID: " i \& ", Score: " \& score(i)		
16	Next i		
17	End Sub		

$$
\begin{aligned}
& \text { name }(0)=\text { "Koji Tanaka" } \\
& \text { name }(1)=\text { "Hiroshi Abe" } \\
& \text { name }(2)=\text { "Akiko Ito" } \\
& \text { name }(3)=\text { "Ichiro Suzuki" } \\
& \text { name }(4)=\text { "Takako Kato" } \\
& \text { name }(5)=\text { "Junpei Kimura" }
\end{aligned}
$$

$$
\text { For } \mathrm{i}=0 \text { To } 5 \text { Step } 1
$$

MsgBox "StudentID: " \& i \& ", Name: " \& name(i) \& ", Score: " \& score (i)

Next I
End Sub

Student ID	name	Score
1	Koji Tanaka	100
2	Hiroshi Abe	65
3	Akiko Ito	76
4	Ichiro Suzuki	87
5	Takako Kato	61
6	Junpei Kimura	99

Exercise 2

- Make similar program that displays for each student if they "Pass" or "Fail" (instead of numerical score)
- "Pass" only when score is equal or greater than 79
- "Fail" otherwise
- Display in increasing order of StudentID
- Ex. StudentID: 1, Name: Koji Tanaka, Score: 100, ->Pass

Sum of Scores

- Calculate the sum of score of a student

```
score(0) score(1) score(2) score(3) score(4) score(5)
```


Exercise 3

- Compute the sum of scores of all students
- Report the sum and the average

```
Sub sum()
'Calculate the sum of score for all student using For - Next
'score: array name, i: counter
'sum: variable for sum, ave: variable for average
    Dim score(5) As Integer
    Dim i As Integer
    Dim sum As Integer
    Dim ave As Single
    sum = 0
    ave = 0.0
    score(0) = 100
    score(1) = 65
    score(2) = 76
    score(3) = 87
    score(4) = 61
    score(5) = 99
    For i = 0 To 5 Step 1
            sum = sum + score(i)
        Next i
        ave = sum/6
        MsgBox "Sum of score for " & i+1 & "students is " & sum
        MsgBox "Average is " & ave
End Sub
```


情報基礎B（Computer Literacy） Lecture 9：more loops

Matias Korman

Tohoku University Graduate School of Information Sciences
System Information Sciences
Design and Analysis of Information Systems

Let's get started!

- Download the sample data
- Available in my webpage
- http://www.dais.is.tohoku.ac.jp/~mati/
- Google my name

Activating Macros in VBA

First we need to activate macros

BONUS: Why aren't they activated by default?

Backup your sheet!
 Programming errors can delete your data. You cannot undo operations!

Activating Macros

Insert -> Regular Module

Accessing values

Cells(Row num, Col num)

If Cells $(2,3)>60$ Then
Cells $(4,7)=30$
End If

Sum and Average Example

Ex 1: Sum and Average for each Subject

Write a procedure to calculate sum and average for each subject using nested loop.

Ex 1: Sum and Average for each Subject

You can copy and edit for the other subject, but...

Write a procedure to calculate sum and average for each subject using nested loop.

Nesting For operations

Procedure to output "rownum *colnum" on each cell in A1 to J10


```
For i=1 to 10
    For j = 1 to 10
    cells(i, j) = i * j
    Next j
Next i
```


Using that for many grades

Calculate sum and average for each subject． Nest structure is below

$$
\text { For } \mathrm{j} \text { ■ to ■ column(subject) }
$$

[^0]
Using that for many grades

Sub sum_ave_6sub()
Dim i As Integer
Dim j As Integer
Dim sum 2 As Integer
Worksheets("Score").Activate

For $\mathrm{j}=2$ To 7
Be careful when
initialize "sum2"
sum2 $=0$
For $i=3$ to 102
sum2 $=\operatorname{sum} 2+\operatorname{Cells}(i, j)$
Next i
'Sum B103
Cells(i, 2) = sum1
'Average B104
Cells(i+1, 2) = sum1 / 100
Next i
End Sub

Grading for each subject

Grading for Japanese

Grading Japanese

- Grading criterion

A: if score >= 90
B: if $90>$ score >= 80
C: if $80>$ score $>=70$
D: if $70>$ score $>=60$
F: if $60>$ score

1	Sub grade_jp()
2	Dim i As Integer
3	Worksheets("Score").Activate
5	For $\mathrm{i}=3$ To 102
6	If Cells (i, 2) >= 90 Then
7	Cells (i, 8) = "A"
8	Elself Cells (i, 2) >= 80 Then
9	Cells (i, 8) = "B"
10	Elself Cells(i, 2) >= 70 Then
11	Cells (i, 8) = "C"
12	Elself Cells(i, 2) >= 60 Then
13	Cells(i, 8) = "D"
14	Else
15	Cells(i, 8) = "F"
16	End If
17	Next i
18	End Sub

Sheet: Score

Row: i

Grading each subject

Grading each Subject

data2.xls

Nested loop

- Grading criterion

A: if score $>=90$
B: if $90>$ score $>=80$
Sub grade_6sub()

C: if $80>$ score $>=70$
Dim i As Integer
Sheet: Score
Dim j As Integer
Worksheets("Score").Activate

Row: i

Col: j

情報基礎B（Computer Literacy） Lecture 10：VBA in Excel

Matias Korman

Tohoku University Graduate School of Information Sciences
System Information Sciences
Design and Analysis of Information Systems

Two dimensional Arrays

Array x(9)
$x(0)$ $x(1)$ $x(2)$ $x(3)$ $x(4)$ $x(5)$ $x(6)$ $x(7)$ $x(8)$ $x(9)$

Array $y(5)$	Array $z(5)$
$\mathrm{y}(0)$	z(0)
$\mathrm{y}(1)$	z(1)
$\mathrm{y}(2)$	z(2)
$y(3)$	z(3)
$y(4)$	z(4)
y(5)	z(5)
y (6)	z(6)
$y(7)$	z(7)
y (8)	z(8)
y(9)	z(9)

2-dimensional Array

$a(0,0)$	$a(0,1)$	$a(0,2)$
$a(1,0)$	$a(1,1)$	$a(1,2)$
$a(2,0)$	$a(2,1)$	$a(2,2)$
$a(3,0)$	$a(3,1)$	$a(3,2)$
$a(4,0)$	$a(4,1)$	$a(4,2)$
$a(5,0)$	$a(5,1)$	$a(5,2)$
$a(6,0)$	$a(6,1)$	$a(6,2)$
$a(7,0)$	$a(7,1)$	$a(7,2)$
$a(8,0)$	$a(8,1)$	$a(8,2)$
$a(9,0)$	$a(9,1)$	$a(9,2)$

Declaring Two dimensional arrays

- ArrayName(Row index range, Column index range)

$a(0,0)$	$a(0,1)$	$a(0,2)$
$a(1,0)$	$a(1,1)$	$a(1,2)$
$a(2,0)$	$a(2,1)$	$a(2,2)$
$a(3,0)$	$a(3,1)$	$a(3,2)$
$a(4,0)$	$a(4,1)$	$a(4,2)$
$a(5,0)$	$a(5,1)$	$a(5,2)$
$a(6,0)$	$a(6,1)$	$a(6,2)$
$a(7,0)$	$a(7,1)$	$a(7,2)$
$a(8,0)$	$a(8,1)$	$a(8,2)$
$a(9,0)$	$a(9,1)$	$a(9,2)$

Dim a(1 to 10,1 to 3) As Integer

2-dimensional array (score per student and course) Array name: a
Number of variables: $10 * 3=30$

Equivalent in Excel

Cells(row, column)

A1	B1	C1		cells (0,0)	cells(0,1)	cells $(0,2)$
A2	B2	C2		cells(1,0)	cells(1,1)	cells(1,2)
A3	B3	C3		cells (2,0)	cells (2,1)	cells (2,2)
A4	B4	C4	-710.	cells (3,0)	cells(3,1)	cells(3,2)
A5	B5	C5		cells (4,0)	cells (4,1)	cells(4,2)
A6	B6	C6		cells(5;0)	cells(5,1)	cells(5,2$)$
A7	B7	C7		cells(6,0)	cells(6,1)	cells (6,2)
A8	B8	C8	\%emen	cells (7,0)	cells(7,1)	cells (7,2)
A9	B9	C9		cells (8,0)	cells(8,1)	cells (8,2)
A10	B10	C10		cells $(9,0)$	cells $(9,1)$	cells $(9,2)$

Row number starts from 1 in Excel!

Beware of Switch!

Methods

- Operation for object
- Delete, Open and more

1 ThisWorkbook.Worksheets("Sheet1").Range("A:A").Delete

Affects
 whole column!

Method (operation we want to do)
Separator between object and method

Method examples

- Many ways of interacting with Excel - Color, Value, ... anything! - Google for more!
$1 \mid$ ThisWorkbook . Worksheets("Sheet1") . Range("A:A") . Value = 1
$1 \mid$ ThisWorkbook . Worksheets("Sheet1") . Range("A:A") . Interior.ColorIndex = 4
$1 \mid$ ThisWorkbook . Worksheets("Sheet1") . Range("A:A") . Delete

Separating Procedures

- Code begins from "Sub" to end with "End Sub"

1	Sub exercise1()
2	ThisWorkbook.Worksheets("Sheet1").Range("A:A").Value = 1
3	End Sub
1	Sub exercise2()
2	ThisWorkbook.Worksheets("Sheet1").Range("A:A").Interior.ColorIndex=4
3	End Sub
1	Sub exercise3C)
2	ThisWorkbook.Worksheets("Sheet1").Range("A:A").Delete
3	End Sub

Affecting multiple cells

- Range operation
- i.e., set the cell value of several cells - Different code, same result

1	Sub Example_Range1()
2	ActiveSheet.Range("A1").Value = 10
3	End Sub
1	Sub Example_Cells1()
2	ActiveSheet.Range(1, 1).Value = 10
3	End Sub

Simple programs

- Output the sum of A1 and A2 to A3 with Range

1 Sub Example_Range3()

2	Range
3	End Sub

- Output the sum of A1 and A2 to A4 with Cells

1 Sub Example_Cells3()

2	Cells
3	End Sub

Sum of Cells B1 to B10

- Output the sum of B1 to B10 to B11 with Range

1 Sub Example_Range4()
Range("B11") = Range("B1") + Range("B2") + Range("B3") + Range("B4") + Range("B5")

+ Range("B6") + Range("B7") + Range("B8")
+ Range("B9") + Range("B10")
3 End Sub

Can you program this in a better way?

Sum of Cells B1 to B10

- Output the sum of B1 to B10 to B11 with Cells

1	Sub Example_Cells5()
2	Dim i As Integer
3	Dim sum1 As Integer
4	sum1=0
5	
6	For i = 1 to 100
7	sum1 = sum1 + Cells (i, 2)
8	Next i
9	
10	Cells $(i, 2)=$ sum1
11	End Sub

情報基礎A
 Lecture 11：Batch processing

Matias Korman

Tohoku University Graduate School of Information Sciences
System Information Sciences
Design and Analysis of Information Systems

Average Score for one Student

Column Operation

Make a procedure to compute the average score of student 1001 into N3

data2.x|s

Sheet: Score
Column: j

Same operation for 100 Students

	4	R	－；	－J	$=$	F	$\therefore \quad \mathrm{H}$	「	s．	ぶ		t．1 1	1	－
1	前			点						17				
？	泣示号	［ I ：${ }^{\text {P }}$		去学	既安	六平，	䭪半 回部	盆㟺	䞨复	辰农	公民	旺科	＋	血
3	11117	＜	\bigcirc	／ 7	－77	ก1	二小下．	fit	$\stackrel{3}{3}$	T「．a｜	a）	－	65．$=$	
4	11110	11	44	99	h.	n^{-}	-1%	－下」	\pm	＝	a）	－7	68	
$\bar{\square}$	11111：	n^{-}	\％	114	4.	n	\cdots Tre	库	侣	T•口1	2］	万	730607	
ذ	11112	6	－11	H11	41	！ 4	－11 5］	J	－下．aj	T•吅	F－	－ 1 ］	6．：ilil	
$\overline{7}$	11116	4	\because	y，	11 II	H，	－ 6 面	情	\pm	方	Fi－	序	पу＜16ifi	
7	1111\％	$\stackrel{\text { h }}{ }$	－ 7	III	11：	；	\because 下e。	－1］	$\stackrel{3}{3}$	18	r	$1{ }^{1}$	＂${ }^{\text {a }}$ alil	
7	1IIII：	；	\because	y ${ }^{\text {a }}$	6i）	6	－6	店	\pm	E．	a］	－1 」	／h－	
1.3	111111	：	－	h^{\prime}	117	\therefore	－／${ }^{\text {d }}$	fi	미	19	r	－」	：－	
11	11114	\therefore	19	$11: 1$	47	6	－9 垵	－	保	T•口1	a）	－\ddagger	大if 1 fifi	
17	1110	111	－-1	114	1 ln	\％－	41 劅	库	$1{ }^{1}$	19	\cdots ¢		く \｜Ilia	
13	1117	L．	－11	ب¢	hth	！ 4		－1	\pm	T． a	\％	－a 」	fin llilia	
12	1115	11	－9	h^{\prime}	\because	－1	－1［ 6	－下」	－「．a］	处	－ 7	－丁口	Allilia	
$1 \overline{1}$	$111{ }^{-1}$	61	－ 6	－96	$4:$	Ki	$4:^{\prime}=1$	－」	\pm	T•口1	2］	－丁口	hi？－	
13	111^{-2}	h1	\because	IIII	$11:$	：	\｜「「．	限	促	（\％）	r	㫛	不 llilil	
17	$111^{-} \mathrm{H}$	：	h	$11: 1$	\％：	24	$\because \because$	12	保	T．01	$\bar{\sim}^{5}$ 。	－1	6．：ilia	
17	$111^{\circ} \mathrm{6}$	f：－	ti	1 IIII	14	$11:$	14 －	\cdots	\pm	－	\％	\cdots	80833 三	
17	111^{*} ：	二－	11	Hh	47	4.	4！下e．	－$\%$	－7．0］	有	\＃	－7 1	701667	
\therefore	$111{ }^{\circ}$	＜－	－ri	号	14	$4-$	¢ 下e．	－下，コ1	－「．a］	建	$\bar{\square}$	$1{ }^{1}$	プー	
$\therefore 1$	111^{-4}	4	in	号	y：	f^{-}	－11	－	－「．a］	． 7	2］	\％	801667	
$\therefore 3$	1119	41	：1	1 IIII	¢：	ب4 4	411 下e．	㥳	\pm	T．01	－$\overline{\text { F }}$	－¢ 〕	70．$=$	
27	111．＇7	41	$\because: 1$	प\％	¢7	－1	－4 下e．	－1］	\pm	T•吅	＋	－1	6三	
\therefore	112ツ	2	－${ }^{\prime}$	411	Y11	¢	－$/$ 下e．	fit	－7．a］	方	a）	底	70833 三	
\cdots	1118：	： 4	$1 \cdot 9$	y＇	Y11	6^{-}	4 tr	－	\pm	\％	2］	－コ	75833 三	
\bigcirc	111，2	$2 \cdot$	－： 1	Y4	H11	h	－：「 下e．	库	\pm	T•口1	\cdots ¢	万	$72 .=$	
\therefore	1115	¢－	＋	11 ＇	11 h	\therefore	－11 51	－	保	12	H	－a	$73 . ⿱$	
？2	111．＇¢	41	－\because	6：	h 2	44	1 下e．	－下」	－7．0］		－${ }^{\text {H }}$	$1{ }^{1}$	62 $233 \pm$	
Must		ISe	a second nested loop						미	F	\％	F	8^{7} ．$=$	
		\pm							\％	$\stackrel{\rightharpoonup}{7}$	－1	80883		
		侣							\％	2］	－ 1	61 833		
		I	TII］	＋171	＂	4 －1	15：	保	［8．	\cdots 。	－1	731667		

Average Score for 100 Students

Procedure that computes average score of each student

data2.x|s

Sheet: Score
Column: j
Row: i

One loop is nested inside the other

Sub student_ave()
Dim i As Integer
Dim j As Integer
Dim sum4 As Integer
Worksheets("Score").Activate

For $\mathrm{i}=3$ To 102
sum4 $=0$
For $\mathrm{j}=2$ To 7
sum $3=\operatorname{sum} 3+\operatorname{Cells}(i, j)$
Next j
Cells($\mathrm{i}, \mathrm{j}+6$) $=$ sum $4 / 6$
Next i
End Sub

Grading

Sheet: Score
Column: j
Row: i

Exercise

- Make a function that highlights cells with score below 60
- Name it Sub grade_6sub

Ex. Function to paint cell B3 red
$1 \mid$ Cells (3,2). Interior.ColorIndex=3

Add it into grade_6 sub

```
Sub grade_6sub()
    Dim i As Integer
    Dim j As Integer
    Worksheets("Score").Activate
    For j = 2 To 7
    For i=3 To 102
    If Cells(i, 2) >= 90 Then
        Cells(i, 8) = "A"
        Elself Cells(i, 2) >= 80 Then
        Cells(i, 8) = "B"
        Elself Cells(i, 2) >= 70 Then
        Cells(i, 8) = "C"
        Elself Cells(i, 2) >= 60 Then
        Cells(i, 8) = "D"
        Else
        Cells(i, 8) = "F"
        End If
        Next i
        Next j
End Sub
```


data2.xls

Sheet: Score

Column: j

Row: i

Add "Cells(i , j).Interior.ColorIndex = 3" into Sub grade_6sub()

Statistics
 -Counting occurrences

Statistics - Pass and Fail

- Modify previous program to compute of "Pass" and "Fail"

```
Sub stat_pass_fail()
    Dim i As Integer
Dim pass As Integer
Dim fail As Integer
Worksheets("Score").Activate
pass = 0
fail = 0
```

```
For i=3 To 102
```

For i=3 To 102
If Cells(i, 15) = "Pass" Then
If Cells(i, 15) = "Pass" Then
pass = pass + 1
pass = pass + 1
Elseif Cells(i, 15) = "Fail" Then
Elseif Cells(i, 15) = "Fail" Then
fail = fail + 1
fail = fail + 1
End If
End If
Next i

```
    Next i
```

 Worksheets("Statistics").Cells(12, 2) = pass
 Worksheets("Statistics").Cells(13, 2) = fail
 End Sub

Easy Exercise

- Make a new program to count grades
- Use Sub stat_pass_fail()to report grades
- Count subjects on sheet "Score" separately
- Report into cells B4:G8 on "Statistics"
- Data input
- Sheet "Score" H3 to M102
- Data output
- Sheet "Statistics" B4 to G8
- Prepare five variables for counters
- For A: a
- For B: b
- For C: c
- For D: d
- For $\mathrm{F}: \mathrm{f}$

Sub stat_grade()	18	For $\mathrm{i}=3$ To 102
Dim i As Integer	19	If Cells(i, 2) >=90 Then
Dim j As Integer	20	Cells (i, 8) = "A"
Dim a As Integer	21	Elself Cells(i, 2) >= 80 Then
Dim b As Integer	22	Cells(i, 8) = "B"
Dim c As Integer	23	Elself Cells(i, 2) >= 70 Then
Dim d As Integer	24	Cells(i, 8) = "C"
Dim f As Integer	25	Elself Cells(i, 2) >= 60 Then
	26	Cells(i, 8) = "D"
Worksheets("Score").Activate	27	Else
	28	Cells(i, 8) = "F"
For $\mathrm{i}=8$ To 13	29	End If
$\mathrm{a}=0$	30	Next i
$b=0$	31	
$\mathrm{c}=0$	32	Worksheets("Statistics").Cells(4, j-6) = a
$\mathrm{d}=0$	33	Worksheets("Statistics").Cells(5, j-6) = b
$f=0$	34	Worksheets("Statistics").Cells(6, j-6) = c
	35	Worksheets("Statistics").Cells(7, j-6) = d
	36	Worksheets("Statistics").Cells(8, j-6) = f
	37	Next j
	38	End Sub

| Sub stat_grade() | 18 |
| :--- | :--- | :--- |
| Dim i As Integer | 19 |
| Dim j As Integer | 20 |
| Dim a As Integer | 21 |
| Dim b As Integer | 22 |
| Dim c As Integer | 23 |
| Dim d As Integer | 24 |
| Dim f As Integer | 25 |
| | 26 |
| Worksheets("Score").Activate | 27 |
| | 28 |
| For i = 8 To 13 | 29 |
| a = 0 | 29 |
| b $=0$ | 30 |
| c $=0$ | 31 |
| d = 0 | 32 |
| f = 0 | 33 |

```
For \(\mathrm{i}=3\) To 102
    If Cells(i, 2) >= 90 Then
    Cells \((i, 8)=\) " \(A\) "
    Elself Cells(i, 2) >= 80 Then
        Cells(i, 8) = "B"
    Elself Cells(i, 2) >= 70 Then
        Cells(i, 8) = "C"
    Elself Cells(i, 2) >= 60 Then
        Cells(i, 8) = "D"
    Else
        Cells(i, 8) = "F"
    End If
Next i
Worksheets("Statistics").Cells(4, j-6) = a
Worksheets("Statistics").Cells(5, j-6) = b
Worksheets("Statistics").Cells(6, j-6) = c
Worksheets("Statistics").Cells(7, j-6) = d
Worksheets("Statistics").Cells(8, j-6) = f
Next j
End Sub
```


Can you do better?

Bonus Exercise

- Let's look for best student in each course - Highlight in green each highest score Beware! More than one student can win! HINT: use a counter
- Call it sub bestStudent()

情報基砹A
 Lecture 12：Combining all together

Matias Korman

Tohoku University Graduate School of Information Sciences
System Information Sciences
Design and Analysis of Information Systems

Inserting a table

Sub chart()

Worksheets("Statistics").Activate

Charts.Add
ActiveChart.ChartType $=x$ lColumnStacked100
ActiveChart.SetSourceData Source := Sheets("Statistics").Range("A2:G8"), PlotBy := xlRows

ActiveChart.Location Where := xlLocationAsObject, Name := "Statistics"
End Sub

Combining it all

- Make a procedure that computes:
- Average score of each course
- Total score of each course
- Average score of each student
- Give a A-E score per student per course
- Give a global pass/fail per student
- Computes the number of pass/fails per course
- Makes a chart showing all of this information

Combining it all

- Make a procedure that computes:
- Average score of each course
- Total score of each course
- Average score of each student
- Give a A-E score per student per course
- Give a global pass/fail per student
- Computes the number of pass/fails per course
- Makes a chart showing all of this information

Sounds Familiar?

Let's nest programs

- We have 6 separate programs that do so
- Sub sum_ave_6sub()
- Sub grade_6sub()
- Sub student_ave()
- Sub stat_pass_fail()
- Sub stat_grade()
- Sub chart()
- Instead of copy/paste and fixing errors, let's make a program that calls all of them
- Use Call "Procedure name"

Invoking other programs

- Procedures are executed in order

1	Sub score()
2	
3	Call sum_ave_6sub
4	Call grade_6sub
5	Call student_ave
6	Call stat_pass_fail
7	Call stat_grade
8	Call chart
9	
10	End Sub

Processing several files at once

- Download collection of grades
- Available on my webpage
- http://www.dais.is.tohoku.ac.jp/~mati/

Scores of 20 courses and 1 summary

Exercise

- We want to score all 20 courses
- We want a program that computes:
- For each class
- Average and sum per course
- Score per student and global pass/fail
- Statistics and chart on each course
- charts, etc
- Write statistics of 20 classes into score.xls

Unfeasible by hand!!

Operating files with VBA

- Opening one file
$1 \mid$ Workbooks.Open Filename := "class1.xls"
- Opening 20 files one by one
- Must use variables to create filenames

1	For $\mathrm{i}=\mathrm{a}$ To 20
2	Workbooks.Open Filename $:=$ "class" \& i \& ".xls"
3	Next i

- Saving and closing active file

1	ActiveWorkbook.Save
2	ActiveWindow.Close

Accessing data from other files

－How can we copy cell the number who got＂A＂in Japanese on class3．xls onto seiseki．xls？
－From cell B4 on sheet＂Statistics＂to B3 on score．xls

Workbooks（＂seiseki．xls＂）．Worksheets（＂平成21年＂）．Cells（3，2）＝Worksheets（＂統計＂）．Cells（4，2）

Be careful with file location!


```
Sub score()
    Dim i As Integer
    Dim m As Integer
    Dim n As Integer
    Dim x As Integer
    Workbooks.Open
    Filename:="\\netsrv22\c90a1rlu\MyDocuments\foo\bar\baz.xls"
    For i=1 To 20
    Workbooks.Open Filename:="\\netsrv22\c90a1rlu\MyDocuments\foo\bar\class" & i & ".xls"
    Call goukei_6kamoku
    Call hyouka_6kamoku
    Call kojin_heikin
    Call toukei_gouhi
    Call toukei_hyoka
    Call graph
    Workbooks("baz.xls").Worksheets("2011").Cells(52, i + 1) = Worksheets("Statistics").Cells(12, 2)
    Workbooks("baz.xls").Worksheets("2011").Cells(53, i + 1) = Worksheets("Statistics").Cells(13, 2)
    x = 0
    For m=1 To 6
        For n=2 To 6
            Workbooks("seiseki.xls").Worksheets("2011").Cells(n+1+x,i+1)=Worksheets("Statistics").Cells(n+2,m+1)
        Next n
        x = x + 8
        Next m
    ActiveWorkbook.Save
    ActiveWindow.Close
    Next i
    Workbooks("seiseki.xls").Save
End Sub
```


Submit your file

- mati@dais.is.tohoku.ac.jp
- Do not forget [KISO2017] in the subject
- Filename with your student ID
- Deadline 22nd January

[^0]: ニアヅ

