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Abstract

A conflict-free coloring, or CF-coloring for short, of a
set P of points in the plane with respect to disks is a
coloring of the points of P with the following property:
for any disk D containing at least one point of P there
is a point p ∈ P ∩D so that no other point q ∈ P ∩D
has the same color as p. In this paper we study the
problem of maintaining such a CF-coloring when the
points in P move. We present two methods for this
and evaluate the maximum number of colors used as
well as the number of recolorings, both in theory and
experimentally.

1 Introduction

Wireless communication is commonplace in many ap-
plications, varying from mobile consumer devices like
cell-phones to specialized networks for autonomous
robots. For clear wireless communication it is impor-
tant to avoid interference. In general interference-free
communication is achieved by using different frequen-
cies for different communication channels. However,
the number of available frequency ranges is limited so
it is impossible to assign a unique frequency to every
communication channel. A more clever frequency-
assignment scheme is therefore needed. Finding a
proper assignment of frequencies is often modeled as
the problem of computing a so-called conflict-free col-
oring, or CF-coloring for short, where different colors
represent different frequencies.

In this paper we look at the problem of finding a
CF-coloring with respect to disks for a set P of points
in the plane. That is, we want to assign colors to the
points of P so that every disk D containing at least
one point of P contains a unique color. More formally,
we want to assign a color color(p) to each point p ∈ P
so that the following property holds: for every disk D
containing at least one point of P , there is a point
p ∈ P ∩ D so that for any point q ∈ P ∩ D\{p} we
have color(p) 6= color(q). It is convenient to identify
the i-th color with the integer i. The goal is then to
minimize the maximum color used in the CF-coloring.
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The problem was introduced by Even et al. [5] who
provide a framework for finding CF-colorings with
respect to disks and several other types of regions.
Their algorithm works by finding independent sets on
a sequence of Delaunay triangulations of subsets of P
and uses O(log n) colors, which is asymptotically op-
timal [5, 7]. Several variants of the problem have also
been studied. For example, Har-Peled et al. [6] pro-
vide a probabilistic algorithm that works for simple
regions with low union-complexity, as well as several
algorithms for special cases such as axis-aligned rect-
angles. They also study k-CF-coloring, which is a re-
laxation of a regular CF-coloring. In a k-CF-coloring
each region need not contain a unique color, but in-
stead a color that occurs between 1 and k times in that
region. There are also several results for online CF-
coloring, where points are added incrementally and
must be assigned a color when added without knowl-
edge of points to come [2, 4]. Additional background
can be found in a recent survey by Smorodinsky [8].

All these papers assume the transmitters are sta-
tionary and frequencies are assigned exactly once.
This may however not always be the case. For
mobile RFID scanners or networks of autonomous
robots, for example, the frequency assignment may
need to change as the transmitters move. Unfortu-
nately changing the frequency of a transmitter is of-
ten undesirable as it may interrupt current communi-
cations with that transmitter. This leads us to study
the problem maintaining a conflict-free coloring in the
so called Kinetic Data Structures (KDS) framework.

Following the KDS framework as introduced by
Basch et al. [3] we assume that we know the trajec-
tories of the points (at least in the short term). The
goal is now to maintain a CF-coloring of the points as
they move along these trajectories. In frequency as-
signment, changing the frequency of a transmitter is
usually expensive. Therefore, we focus on keeping the
number of recolorings low while using O(log n) colors.
We provide two algorithms for this, both based on
the algorithm by Even et al. [5]. For both algorithms
we provide a theoretical analysis and an experimental
analysis of the maximum number of colors used and
of the number of recolorings.

2 The algorithms

First we describe the algorithm by Even et al. [5]
for static points in more detail, as our kinetic algo-
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rithms are based on this. The algorithm is recursive
and starts by computing the Delaunay triangulation
DT (P1) of the complete point set P1 := P . The next
step is to find a large independent set I1 ⊂ P1 in
DT (P1). All points in I1 receive color 1. On the
set P2 := P1\I1 a new Delaunay triangulation and
independent set I2 are computed, then the points in
I2 receive color 2, and the algorithm proceeds with
P3 := P2\I2. This process is repeated until all points
are colored. If we compute the independent set in each
DT (Pi) in a greedy manner, by considering the points
in order of increasing degree, we can guarantee that
|Ii| > |Pi|/6, which implies that the algorithm finishes
after O(log n) rounds. The proof that this procedure
produces a conflict-free coloring was given—in a more
general setting—by Even et al. [5].

Next we adapt the static algorithm to a kinetic
setting where points move along known constant-
complexity curves. From the above it is clear that as
long as none of the Delaunay triangulations change,
then the coloring remains conflict-free. However,
as the points move the Delaunay triangulation can
change, namely when four points that form a quadran-
gle in the Delaunay triangulation become co-circular.
When this happens a diagonal of the quadrangle flips,
which may invalidate the independent set. Under
known motions these co-circularities are not difficult
to detect and kinetic data structures exist that main-
tain a Delaunay triangulation and support insertion
and deletion of vertices [1]. Therefore we focus on re-
pairing the independent sets when such a flip occurs.
We propose two different methods, a greedy method
and a lazy method.

In the following we describe what the two methods
do when a flip occurs between vertices within a quad-
rangle Q := Q(p, q, r, s), where the edge pr is replaced
by qs. The quadrangle Q may exist in the Delaunay
triangulation of multiple consecutive levels, but only
in the last level i where it occurs can one or more of
the points p, q, r, s be in the independent set. This
follows from the fact that a point in the independent
set of level i cannot occur in any level j > i. We de-
note this level by lev(Q) and use k to denote the total
number of colors used before recovering.

Lazy updates. In the lazy approach we check if the
new edge connects two points in the independent set,
thus making the set no longer independent. If so, we
recolor one of the two conflicting vertices to a new
color. As a result the independent set of each layer
will slowly become smaller compared to the total num-
ber of points in that layer. When the independent
set becomes too small, we completely recompute the
structure from that layer onward.

In more detail, let Q := Q(p, q, r, s) denote the
quadrangle within which the flip occurred, where edge

pr is replaced by qs. Let i := lev(Q). When the edge
pr flips to edge qs, we check if q and s are both in the
independent set Ii. If so, we remove one of the two,
say q, from Ii, give it a new color k + 1 and add it to
all sets Pj for i < j 6 k+1. Note that any two points
that were independent in DT (Pj) are still indepen-
dent in DT (Pj ∪ {q}). Since we reduced Ii in size we
check if it has become too small. More precisely, we
check if |Ii| < |Pi|/12, and if so we recolor Pi entirely
by running the static algorithm on Pi. We call this a
reset at level i. If we do not do a reset at level i, we
check if |Ij | < |Pj |/12 for some j > i. (This is needed
since we added q to all sets Pj for i < j 6 k + 1.) If
this is the case for some levels j, we do a reset at the
smallest such level j.

Lemma 1 Maintaining a CF-coloring with lazy up-
dates ensures that we use at most O(log n) colors at
any time.

Proof. Each update guarantees that the sets Ii are
independent. Following the proof of Even et al. [5]
this is enough to enough to show the coloring remain
conflict-free. Since we guarantee that each indepen-
dent set Ii contains at least |Pi|/12 points at any time,
O(log n) colors are used. �

Our goal is to guarantee a CF-coloring using as few
recolorings as possible. Therefore, we now study the
number of recolorings that this method makes. It is
easy to see that a single flip in a Delaunay triangu-
lation may cause Θ(n) recolorings: if a flip triggers a
reset of the first level, then all points may be recol-
ored. However, this does not happen often since our
greedy independent-set computation guarantees that
initially |Ii| > |Pi|/6, whereas we won’t reset until
|Ii| < |Pi|/12. Most events—that is, flips in the De-
launay triangulation—do not cause many recolorings
and we can in fact prove that amortized only O(log n)
recolorings happen per event.

Lemma 2 Each event triggers O(log n) recolorings
amortized.

Proof. We prove this using an accounting scheme,
where each point p has a wallet Wi(p) with a certain
amount of money, for every level i where it occurs.
To recolor a point it must pay e1. Thus, when doing
a reset at level i, all points in Pi must pay e1. Next
we show that in each event we have to spend only
O(log n) euro to guarantee we can pay for all recol-
orings. We keep as an invariant that any point p in
every level i where it occurs has at least

1− |Ii| − |Pi|/12

|Pi|/12
= 2− 12|Ii|

|Pi|
euros

in its wallet Wi(p). Note that since |Ii| > |Pi|/6 after
a reset at level i, the points need not have any money
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immediately after a reset. Moreover, a reset occurs
when |Ii| < |Pi|/12, so then each point has at least
e1 and can pay for its recoloring.

Next we show we need to spend no more than
O(log n) euro per event to maintain the invariant.
Consider an event that causes point q to be removed
from the independent set Ii and added to a new level
Pk+1. The wallets for points in levels j < i do not
change as the set Pj and Ij do not change. In level i
the size of Pi remains the same, but Ii becomes one
smaller. Let Ii and Pi denote the independent set and
complete set of points in level i before the event and
I ′i and P ′i the same sets after the event. Before the
event we know that each point p ∈ Pi has at least
2− 12|Ii|/|Pi| euro. After the event it should have at
least 2 − 12|I ′i|/|P ′i | = 2 − 12(|Ii| − 1)/|Pi| euro. To
ensure this we must give each point at most 12/|Pi|
euro, so at most e12 in total for all points in level i.

The money to be payed to levels j > i is calculated
as follows. Before the event each point in level j has
at least 2−12|Ij |/|Pj | euro and after the event it must
have at least 2 − 12|Ij |/(|Pj | + 1) euro. This means
we should pay each point in Pj (not including q)

12|Ij |
|Pj |

− 12|Ij |
|Pj |+ 1

=
12|Ij |

|Pj |(|Pj |+ 1)
6

12

|Pj |+ 1
euro.

Since we have to pay this to |Pj | points, this costs us
no more than e12 per level. Lastly we have not yet
filled the wallet for the point q in all the levels it has
been added to. However, in each level it requires at
most e1. In total we spend no more than e13 per
level, so O(log n) euro in total. �

Greedy updates. In the lazy approach we do
O(log n) recolorings amortized per event, but in some
updates we may have to recolor all points. We can
try to avoid this worst-case behavior by keeping the
independent sets large. To this end, at each event
we not only remove a point from an independent set,
but we also try to add new points. We maintain as an
invariant that each independent set is a maximal inde-
pendent set consisting only of points with degree less
than 12. This produces an independent set Ii with
|Ii| > |Pi|/24, as at least half the vertices have de-
gree less than 12 and choosing one of these eliminates
no more than 12 from becoming part of the indepen-
dent set. Next we discuss the updates necessary to
maintain this invariant.

Consider an event that is a flip within quadran-
gle Q := Q(p, q, r, s), where the edge pr is replaced
by edge qs. We denote by lev∗(Q) the first level
(that is, with smallest index i) where this flip occurs.
When processing the event we start at lev∗(Q) and
then proceed to later levels. In each level we have
the following situation. We have a current set Pi

with Delaunay triangulation DT (Pi) and two (pos-
sibly empty) sets P+

i and P−i . The set P+
i contains

points that are “pushed down” from the parent level
because they are no longer in the independent set at
that level; the set P−i contains points that are “pulled
up” from the parent level because they have just been
added to the independent set at the parent level. We
then update the Delaunay triangulation by construct-
ingDT ((Pi∪P+

i )\P−i ), update the independent set Ii,
and construct the sets P+

i+1 and P−i+1 by looking at the
differences between old and new independent set Ii.

In more detail we proceed as follows. We start
by computing DT ((Pi ∪ P+

i ) \ P−i ). Note that for
i = lev∗(Q) we have P+

i = P−i = ∅, but the Delau-
nay triangulation still changes because of the flip in Q.
Let P ∗i denote the set of points whose neighbor set has
changed, including the set P+

i of new points. Now for
the points in P ∗i ∩ Ii we test if they still have degree
below 12, otherwise we remove them from Ii. Then
we check if any two vertices remaining in the indepen-
dent set are connected, and we remove one of them if
needed. We repeat this until no more connected pairs
exist, and we have obtained an independent set for
the new Delaunay triangulation. Next we make the
independent set maximal by greedily adding points
with degree less than 12 that are not connected to
any points of the independent set. The resulting set
is the new independent set Ii. As already mentioned,
we then construct the sets P+

i+1 and P−i+1 by looking at
the differences between old and new independent set
Ii. Note that the sets P+

i and P−i (and, hence, the set
P ∗i of “affected points”) may grow as we go down the
levels. Unfortunately it seems hard to prevent this,
which makes it difficult to bound the worst-case num-
ber of recolorings. Fortunately our experiments (see
below) show that in practice the avalanche effect is
limited and not too many recolorings occur per event.

3 Experimental results

We showed some basic theoretical bounds for the
number of recolorings. However, especially for the
greedy approach it seems unlikely that in practice we
need many recolorings per step. We therefore imple-
mented both algorithms in order to count the number
of recolorings. For our input we use sets of points
that move along straight lines within a bounding box.
To avoid points going outside the bounding box, they
bounce back when hitting the edge of bounding box.
We ran our implementation of the two methods for
sets of moving points ranging from 20 to 2000 points
and measure the number of recolorings per step as well
as the total number of colors used. For 100 points the
results can be found in Fig. 1. The results with other
amounts of points are summarized in Table 1 and are
based on a run of 10,000 events—that is, flips in any
of the Delaunay graphs.

The graphs of Fig. 1 clearly show the difference be-
tween the two methods. The lazy method has a very
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Figure 5.1: Examples of the number of recolorings (red) and the number of colors (green)
during 2500 events. Upper left: Bounded IS algorithm with 100 points. Upper right:
Bounded IS algorithm with 1000 points. In both the Bounded IS graphs the reset size appears
to ascend until the reset of the first layer. Lower left: Maximal IS algorithm with 100 points.
Lower right: Maximal IS algorithm with 1000 points.

Figure 5.1 shows some examples of the progression of the number of colors and number
of recolorings during these experiments, and Tables 5.1 and 5.2 show the results of these
experiments.

One interesting pattern in the figures is the “staircase e↵ect” that appears during the
Bounded IS algorithm. Namely, the recoloring spikes seem to get bigger and bigger towards
the end of the graph. In fact, for two subsequent layers Li and Li+1, we have that Li+1 tends
to reset shortly before Li resets. The reason that this occurs is that Li+1 is “almost” the size
of Li, so its bounds break shortly before Li’s bounds break. This means we expect a slightly
smaller spike shortly before a large spike, which gives us these increasing reset sizes. After a
reset of the first layer we expect the spikes to start small again.

It is of course a bit wasteful to have a layer Li+1 recolor shortly before Li, since it means
most of the points in Li are recolored twice in a row, and if Li would have broken its bounds
before Li+1 then Li+1 would not have to recolor again for a while.

Figure 5.2 shows the average and maximum number of colors plotted against log n. The

32

Figure 5.1: Examples of the number of recolorings (red) and the number of colors (green)
during 2500 events. Upper left: Bounded IS algorithm with 100 points. Upper right:
Bounded IS algorithm with 1000 points. In both the Bounded IS graphs the reset size appears
to ascend until the reset of the first layer. Lower left: Maximal IS algorithm with 100 points.
Lower right: Maximal IS algorithm with 1000 points.

Figure 5.1 shows some examples of the progression of the number of colors and number
of recolorings during these experiments, and Tables 5.1 and 5.2 show the results of these
experiments.

One interesting pattern in the figures is the “staircase e↵ect” that appears during the
Bounded IS algorithm. Namely, the recoloring spikes seem to get bigger and bigger towards
the end of the graph. In fact, for two subsequent layers Li and Li+1, we have that Li+1 tends
to reset shortly before Li resets. The reason that this occurs is that Li+1 is “almost” the size
of Li, so its bounds break shortly before Li’s bounds break. This means we expect a slightly
smaller spike shortly before a large spike, which gives us these increasing reset sizes. After a
reset of the first layer we expect the spikes to start small again.

It is of course a bit wasteful to have a layer Li+1 recolor shortly before Li, since it means
most of the points in Li are recolored twice in a row, and if Li would have broken its bounds
before Li+1 then Li+1 would not have to recolor again for a while.

Figure 5.2 shows the average and maximum number of colors plotted against log n. The

32

Figure 1: Number of recolorings indicated in red and total number of colors used in green for the lazy (left) and
greedy (right) method. Both are measured from an instance with 100 moving points.
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Figure 1: Number of recolorings indicated in red and total number of colors used in green for the lazy (left) and
greedy (right) method. Both are measured from an instance with 100 moving points over 2500 events.

Lazy Updates Greedy Updates
#Colors #Recolorings #Colors #Recolorings

n avg max avg
logn

max
logn total max avg max avg

logn
max
logn total max

20 12.4 15 2.9 3.5 1232 20 8.2 10 1.9 2.3 6414 12
50 17.2 22 3.0 3.8 1569 50 11.2 14 2.0 2.5 8036 19

100 20.9 28 3.1 4.2 2017 100 13.5 16 2.0 2.4 9834 24
200 24.6 31 3.2 4.1 2275 200 15.9 18 2.1 2.4 12034 27
500 28.3 35 3.2 3.9 2879 337 19.1 21 2.1 2.3 15248 34

1000 31.3 38 3.1 3.8 4064 444 21.3 23 2.1 2.3 18406 62
2000 34.0 42 3.1 3.8 5659 696 23.5 25 2.1 2.3 22164 60

Table 1: Number of colors used and recolorings for n moving points using lazy and greedy updates.

low number of recolorings for most events, but several
events with a many recolorings that correspond to re-
sets at top levels of our data structure. This step-wise
behavior is also found in the total number of colors
used, which slowly goes up until a reset of one of the
top levels is done. The greedy approach on the other
hand does not have this spiky behavior, and instead
many events cause between 5 and 20 recolorings, but
rarely more than that. It also has the effect that the
total number of colors appears very stable.

In Table 1 we see that in both cases the number of
colors used is proportional to log n. What is interest-
ing though is that although the greedy method uses
less colors, both on average and maximum, it requires
many more recolorings on average. This shows that
the neither of the two methods is strictly better than
the other. If one can afford to do many recolorings ev-
ery now and then, and one does not care about using
a few more colors, then the lazy method is better as
it will do fewer recolorings. On the other hand, if the
goal is to keep the total number of colors very small
or to avoid many recolorings at a single event, then
the greedy method appears better.
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